
HiringHustle Python Interview kit-1 2



HiringHustle Python Interview kit-1 1

HiringHustle Python Interview 
kit-1 
Note to Readers
This book is designed to cater to a wide audience, including college students, 
individuals preparing for interviews, working professionals, and anyone looking 
to strengthen their Python programming skills. It serves as a comprehensive 
guide to core and advanced Python topics, presented in an easy-to-understand 
format.



HiringHustle Python Interview kit-1 3

This is Part One, containing 50 chapters:

1. Introduction to Python

2. Data Types and Variables

3. Basic Operations

4. Conditional Statements

5. Loops

6. Lists

7. Dictionaries

8. Sets

9. Tuples

10. Strings

11. Functions

12. Recursion

13. File I/O

14. Error and Exception Handling

15. Object-Oriented Programming

16. Regular Expressions

17. Iterators and Generators

18. Decorators

19. Comprehensions

20. Multithreading

21. Multiprocessing

22. Modules and Packages

23. Date and Time

24. Linked Lists

25. Filter

26. Heapq

27. Tuple



HiringHustle Python Interview kit-1 4

28. Basic Input and Output

29. Files & Folders I/O

30. os.path

31. Iterables and Iterators

32. Defining Functions with List Arguments

33. Functional Programming in Python

34. Partial Functions

35. Classes

36. Metaclasses

37. String Formatting

38. String Methods

39. Using Loops Within Functions

40. Importing Modules

41. Difference Between Module and Package

42. Math Module

43. Complex Math

44. Collections Module

45. Operator Module

46. JSON Module

47. Sqlite3 Module

More chapters and advanced topics will be added in future editions to further 
enrich your learning experience.

Stay tuned for updates and enhancements!

Chapter 1: Getting Started with Python Language
This chapter introduces the basics of Python programming. It covers the 
fundamental concepts that will help you start writing and running Python 
programs. From setting up the Python environment to understanding the basic 



HiringHustle Python Interview kit-1 5

syntax and concepts, this chapter lays the foundation for your Python learning 
journey.

Section 1.1: Getting Started
To begin programming in Python, you'll need to install Python on your 
computer. Python is available for multiple operating systems, including 
Windows, macOS, and Linux. You can download the latest version of Python 
from the official Python website.

Running Python Code
Once installed, you can run Python using:

Python IDE: IDLE (Integrated Development and Learning Environment) 
comes pre-installed with Python.

Command Line/Terminal: You can also run Python scripts using the 
terminal (e.g., python script.py ).

Python supports both interactive and script-based programming. In interactive 
mode, you can type and execute Python code directly in the terminal or IDLE.

Section 1.2: Creating Variables and Assigning Values
In Python, you don't need to declare a variable before using it. Variables are 
created when you first assign a value to them. Python is dynamically typed, 
meaning you don’t need to specify the type of the variable.

Examples:

python

Copy code

# Assigning values to variables

x = 5

name = "John"

price = 12.99

is_active = True

# You can also reassign variables

https://www.python.org/downloads/


HiringHustle Python Interview kit-1 6

x = "Hello"

Variables can hold values of various types, and Python will automatically 
handle the type based on the assigned value.

Section 1.3: Block Indentation
Python uses indentation to define blocks of code. This is crucial as Python 
doesn’t use curly braces ( {} ) to mark the beginning and end of code blocks, 
unlike many other languages. Proper indentation is necessary for Python code 
to run correctly.

Example:

python

Copy code

def greet(name):

    print(f"Hello, {name}!")  # This line is indented

greet("Alice")  # Function call

If you don’t maintain correct indentation, Python will throw an IndentationError .

Chapter 2: Python Data Types
In this chapter, we will explore the core data types in Python. Understanding 
data types is essential for working with different kinds of information in Python, 
from strings and numbers to more complex collections like lists, sets, and 
dictionaries. Each data type has its own properties and methods, which are 
used to manipulate data efficiently.

Section 2.1: String Data Type
A string is a sequence of characters enclosed in quotes, either single ( ' ) or 
double ( " ). Strings in Python are immutable, meaning once created, their 
values cannot be changed.

String Operations:



HiringHustle Python Interview kit-1 7

Concatenation: Combine strings using the +  operator.

python

Copy code

greeting = "Hello"

name = "Alice"

message = greeting + " " + name  # "Hello Alice"

Repetition: Repeat strings using the  operator.

python

Copy code

word = "Python"

print(word * 3)  # Output: PythonPythonPython

String Length: Use the len()  function to find the length of a string.

python

Copy code

text = "Python"

print(len(text))  # Output: 6

Accessing Characters: Strings support indexing and slicing.

python

Copy code

word = "Python"

print(word[0])  # Output: P

print(word[1:4])  # Output: yth

Methods:
str.upper() : Converts all characters to uppercase.



HiringHustle Python Interview kit-1 8

python

Copy code

text = "hello"

print(text.upper())  # Output: HELLO

str.lower() : Converts all characters to lowercase.

python

Copy code

text = "HELLO"

print(text.lower())  # Output: hello

str.replace() : Replaces a substring with another.

python

Copy code

text = "I love Python"

print(text.replace("love", "hate"))  # Output: I hate Py

thon

Section 2.2: Set Data Type
A set is an unordered collection of unique elements. Sets are useful for 
membership testing and removing duplicates from a collection. Sets are 
mutable, meaning you can add or remove elements after creation, but they do 
not allow duplicates.

Creating a Set:

python

Copy code

my_set = {1, 2, 3, 4, 5}



HiringHustle Python Interview kit-1 9

Set Operations:
Adding Elements: Use add()  to add an element to a set.

python

Copy code

my_set.add(6)

Removing Elements: Use remove()  or discard()  to remove an element. 
remove()  will raise an error if the element is not present, while discard()  
does not.

python

Copy code

my_set.remove(3)

my_set.discard(7)  # Does nothing as 7 is not in the set

Set Union: Combine two sets using the |  operator or union()  method.

python

Copy code

set1 = {1, 2, 3}

set2 = {3, 4, 5}

union_set = set1 | set2  # Output: {1, 2, 3, 4, 5}

Set Intersection: Get common elements between two sets using the &  
operator or intersection()  method.

python

Copy code

intersection_set = set1 & set2  # Output: {3}

Section 2.3: Numbers Data Type



HiringHustle Python Interview kit-1 10

Python has several numeric types, including integers ( int ), floating-point 
numbers ( float ), and complex numbers ( complex ).

Integer:

python

Copy code

x = 5  # Integer

Floating-point:

python

Copy code

y = 3.14  # Float

Complex Numbers:
Complex numbers consist of a real and imaginary part, represented as a + bj , 
where a  and b  are numbers, and j  is the imaginary unit.

python

Copy code

z = 3 + 5j  # Complex number

Mathematical Operations:
Python supports basic arithmetic operations:

python

Copy code

a = 10

b = 3

print(a + b)  # Addition: 13

print(a - b)  # Subtraction: 7

print(a * b)  # Multiplication: 30



HiringHustle Python Interview kit-1 11

print(a / b)  # Division: 3.3333...

print(a // b)  # Floor Division: 3

print(a % b)  # Modulus: 1

print(a ** b)  # Exponentiation: 1000

Section 2.4: List Data Type
A list is an ordered collection of items, which can be of different data types. 
Lists are mutable, so you can change their elements after creation.

Creating a List:

python

Copy code

my_list = [1, 2, 3, "Python", 4.5]

List Operations:
Accessing Elements: Use indexing to access individual elements.

python

Copy code

print(my_list[0])  # Output: 1

Slicing: Extract a sublist using slicing.

python

Copy code

print(my_list[1:4])  # Output: [2, 3, 'Python']

Appending and Inserting:

python

Copy code



HiringHustle Python Interview kit-1 12

my_list.append(6)  # Adds 6 at the end

my_list.insert(2, "New Item")  # Inserts at index 2

Removing Elements:

python

Copy code

my_list.remove("Python")  # Removes the first occurrence 

of "Python"

my_list.pop(1)  # Removes element at index 1

Section 2.5: Dictionary Data Type
A dictionary is an unordered collection of key-value pairs. Keys must be unique 
and immutable, while values can be of any data type. Dictionaries are mutable, 
meaning you can change the value of a key.

Creating a Dictionary:

python

Copy code

my_dict = {"name": "Alice", "age": 25, "city": "New York"}

Accessing Values:

python

Copy code

print(my_dict["name"])  # Output: Alice

Adding or Updating Items:

python

Copy code



HiringHustle Python Interview kit-1 13

my_dict["age"] = 26  # Update the value

my_dict["country"] = "USA"  # Add a new key-value pair

Removing Items:

python

Copy code

del my_dict["city"]  # Removes the key "city"

Section 2.6: Tuple Data Type
A tuple is an ordered collection of items, similar to a list, but tuples are 
immutable. Once a tuple is created, its values cannot be changed.

Creating a Tuple:

python

Copy code

my_tuple = (1, 2, 3, "Python")

Accessing Elements:

python

Copy code

print(my_tuple[1])  # Output: 2

Slicing:

python

Copy code

print(my_tuple[1:3])  # Output: (2, 3)



HiringHustle Python Interview kit-1 14

Tuples are often used when you want to ensure that the data does not change 
during execution.

Conclusion
In this chapter, we have covered the basic data types in Python: strings, sets, 
numbers, lists, dictionaries, and tuples. Understanding these data types will 
help you manipulate data effectively in Python programs. Each data type has its 
own strengths, and choosing the right one depends on the problem you're 
solving.

Chapter 3: Indentation
Indentation is a critical part of writing Python code. Unlike many other 
programming languages that use curly braces {}  or keywords to define code 
blocks, Python uses indentation to structure code. This chapter explains the 
importance of indentation, how it is parsed by Python, and common errors that 
can occur due to incorrect indentation.

Section 3.1: Simple Example
In Python, indentation is used to define the scope of loops, functions, classes, 
conditionals, and other code blocks. The code inside the block is indented, 
typically by 4 spaces or a tab, but spaces are preferred in most Python style 
guides.

Example: Basic Python Indentation

python

Copy code

def greet():

    print("Hello, World!")

greet()

In this example:



HiringHustle Python Interview kit-1 15

The print("Hello, World!")  line is indented to indicate that it belongs to the 
greet()  function.

The indentation allows Python to identify that the print  statement is part of 
the greet  function’s block.

Another Example: Conditionals

python

Copy code

x = 5

if x > 3:

    print("x is greater than 3")

    print("This is inside the if block")

else:

    print("x is less than or equal to 3")

In this example:

The code inside the if  and else  blocks is indented.

Without indentation, Python wouldn’t know which statements belong to 
which block.

Section 3.2: How Indentation is Parsed
Python uses indentation to group statements into blocks, which can then be 
treated as a unit. When Python executes code, it reads the indentation level to 
determine which statements belong to which block.

Consistent Indentation: Python requires that the same level of indentation 
be used for all statements in a block.

Tabs vs. Spaces: Python allows both tabs and spaces for indentation, but it 
is important to choose one style and use it consistently throughout your 
code. Mixing tabs and spaces can lead to errors.

How Python Processes Indentation:
The first line of a block is indented, and all subsequent lines within that 
block must be indented at the same level.



HiringHustle Python Interview kit-1 16

Python uses the indentation level to decide whether a line is part of a 
current block or if it's a new block.

Example: Indentation with Loops

python

Copy code

for i in range(3):

    print(i)  # Indented inside the for loop

print("Done")  # Not indented, outside the for loop

The print(i)  statement is part of the for  loop because it's indented.

The print("Done")  statement is not part of the loop because it's not 
indented.

Section 3.3: Indentation Errors
Python is very strict about indentation. If your code is not properly indented, 
Python will raise an IndentationError  or TabError . Here are some common 
indentation errors:

1. Missing Indentation

python

Copy code

def greet():

print("Hello!")  # IndentationError: expected an indented b

lock

The line print("Hello!")  must be indented to indicate it belongs to the 
greet()  function.

2. Inconsistent Indentation (Tabs vs. Spaces)

python

Copy code

def greet():



HiringHustle Python Interview kit-1 17

    print("Hello")  # Indented with spaces

print("World")   # Indented with a tab

This will cause a TabError  because Python does not allow mixing spaces 
and tabs. Use spaces or tabs consistently, and PEP 8 recommends using 4 
spaces per indentation level.

3. Unnecessary Indentation

python

Copy code

if True:

    print("True")

        print("Indented incorrectly")  # IndentationError: 

unexpected indent

The second print("Indented incorrectly")  line is indented too much and leads 
to an error. Python expects this to be at the same level as the previous line 
inside the if  block.

4. Indentation in the Wrong Scope

python

Copy code

if True:

    print("Inside if")

print("Outside if")

    print("Wrong indentation")  # IndentationError: unexpec

ted indent

The second print("Wrong indentation")  line is incorrectly indented. It should 
be at the same level as print("Outside if") .



HiringHustle Python Interview kit-1 18

Chapter 4: Comments and Documentation
Writing clear and effective comments and documentation is an essential part of 
writing maintainable code. In this chapter, we'll explore how to add comments 
to your Python code, how to access and write documentation, and how 
docstrings help both developers and tools to understand the purpose and 
behavior of your code.

Section 4.1: Single Line, Inline, and Multiline Comments

1. Single Line Comments
A single-line comment starts with the hash symbol ( # ). Everything following 
the #  on that line will be treated as a comment.

python

Copy code

# This is a single-line comment

x = 10  # This is an inline comment

In the first example, the entire line is a comment.

In the second example, the comment follows the code on the same line and 
is known as an inline comment.

2. Multiline Comments
Python doesn't have a specific syntax for multiline comments, but you can use 
consecutive #  symbols to create comments over multiple lines. Alternatively, 
you can use triple quotes ( '''  or """ ) to create a multiline string that acts as a 
comment, though this is technically a string, not a comment.

python

Copy code

# This is a multiline comment

# that continues on the next line

# and goes on until the end.

'''

This is a multiline string.



HiringHustle Python Interview kit-1 19

It will not be executed, and is often used as a comment blo

ck.

'''

The #  symbol is the preferred way to write multiline comments for clarity, 
especially when commenting on sections of code.

Triple quotes can be used for multiline strings that are not assigned to a 
variable, and they can also be used for docstrings (explained later).

Section 4.2: Programmatically Accessing Docstrings
Docstrings are string literals that appear at the beginning of a function, class, 
or module and are used to describe its purpose. Python provides a built-in way 
to access docstrings programmatically using the help()  function or by directly 
accessing the .__doc__  attribute.

Example: Accessing Docstrings with help()

python

Copy code

def greet():

    """This function prints a greeting message."""

    print("Hello, World!")

help(greet)

The help()  function displays the docstring of the function, class, or module.

In this case, it will show the message: "This function prints a greeting 
message."

Accessing Docstrings with .__doc__

python

Copy code

print(greet.__doc__)  # Output: This function prints a gree



HiringHustle Python Interview kit-1 20

ting message.

The .__doc__  attribute is a string containing the docstring of the function. 
You can use it to retrieve and manipulate documentation programmatically.

Section 4.3: Write Documentation Using Docstrings
Docstrings are used to provide documentation for your code. By placing a 
string literal inside a function, class, or module, you describe what it does, its 
parameters, and what it returns (if applicable). Python’s documentation tools, 
such as help() , rely on these docstrings.

Docstring Format
The recommended format for docstrings follows this structure:

A short description of the function, class, or module.

A description of the parameters (if applicable), including types and 
purpose.

A description of the return value (if applicable), including its type.

Optional: Examples of how to use the function or class.

1. Function Docstrings
Here’s an example of a properly documented function:

python

Copy code

def add_numbers(a, b):

    """

    Adds two numbers and returns the result.

    Parameters:

    a (int, float): The first number to add.

    b (int, float): The second number to add.

    Returns:

    int, float: The sum of the two numbers.



HiringHustle Python Interview kit-1 21

    Example:

    >>> add_numbers(2, 3)

    5

    """

    return a + b

The short description explains what the function does.

The Parameters section describes each parameter, including its type and 
purpose.

The Returns section explains what the function returns and its type.

The Example section provides a sample usage of the function.

2. Class Docstrings
Classes can also be documented with docstrings. Here’s an example:

python

Copy code

class Car:

    """

    A class representing a car.

    Attributes:

    make (str): The make of the car.

    model (str): The model of the car.

    year (int): The year the car was manufactured.

    Methods:

    start_engine(): Starts the car's engine.

    stop_engine(): Stops the car's engine.

    """

    def __init__(self, make, model, year):

        self.make = make

        self.model = model

        self.year = year



HiringHustle Python Interview kit-1 22

    def start_engine(self):

        print(f"{self.make} {self.model}'s engine starte

d.")

    def stop_engine(self):

        print(f"{self.make} {self.model}'s engine stoppe

d.")

The Attributes section lists all the attributes of the class with descriptions.

The Methods section lists all the methods and a short description of each.

3. Module Docstrings
You can also document entire Python files (modules) by placing a docstring at 
the top of the file:

python

Copy code

"""

This module provides utility functions for working with str

ings.

Functions:

- capitalize_first_letter(): Capitalizes the first letter o

f a string.

- reverse_string(): Reverses a string.

"""

This docstring provides an overview of what the module does and lists the 
available functions.

Chapter 5: Date and Time
In this chapter, we will explore how to work with dates and times in Python 
using the datetime  module and other useful libraries. Handling dates and times 
accurately is essential in various applications, and Python provides powerful 
tools to manage and manipulate date and time data effectively.



HiringHustle Python Interview kit-1 23

Section 5.1: Parsing a String into a Timezone-Aware Datetime 
Object
Parsing a string into a timezone-aware datetime  object allows you to handle 
timestamps correctly across different time zones. You can use the 
datetime.strptime()  method to parse a string into a datetime  object and then 
make it timezone-aware using the pytz  library.

Example:

python

Copy code

from datetime import datetime

import pytz

# Parse string into datetime

dt_str = "2024-12-29 15:30:00"

dt = datetime.strptime(dt_str, "%Y-%m-%d %H:%M:%S")

# Make it timezone-aware

timezone = pytz.timezone("America/New_York")

dt_aware = timezone.localize(dt)

print(dt_aware)

Here, strptime()  parses the string into a naive datetime  object.

Then, pytz.timezone().localize()  makes it timezone-aware.

Section 5.2: Constructing Timezone-Aware Datetimes
Creating timezone-aware datetime  objects from scratch ensures that time 
information is associated with a specific timezone.

Example:

python

Copy code

from datetime import datetime

import pytz



HiringHustle Python Interview kit-1 24

# Construct a timezone-aware datetime object

timezone = pytz.timezone("Europe/London")

dt = datetime(2024, 12, 29, 15, 30, 0, tzinfo=timezone)

print(dt)

This creates a datetime  object and associates it with the London timezone.

The tzinfo  parameter makes the datetime object timezone-aware.

Section 5.3: Computing Time Differences
You can compute time differences by subtracting two datetime  objects, which 
results in a timedelta  object. This object contains information such as the 
number of days, seconds, and microseconds between the two datetimes.

Example:

python

Copy code

from datetime import datetime

dt1 = datetime(2024, 12, 29, 10, 0, 0)

dt2 = datetime(2024, 12, 29, 15, 30, 0)

time_diff = dt2 - dt1

print("Time Difference:", time_diff)

The result is a timedelta  object, which in this case will show a difference of 
5 hours and 30 minutes.

Section 5.4: Basic Datetime Objects Usage
Datetime objects in Python can be used to represent dates and times. You can 
create datetime  objects and access various properties such as year, month, 
day, hour, minute, second, etc.

Example:



HiringHustle Python Interview kit-1 25

python

Copy code

from datetime import datetime

# Current date and time

now = datetime.now()

print("Year:", now.year)

print("Month:", now.month)

print("Day:", now.day)

print("Hour:", now.hour)

print("Minute:", now.minute)

print("Second:", now.second)

datetime.now()  returns the current local date and time as a datetime  object.

You can access individual components like year, month, day, hour, minute, 
and second.

Section 5.5: Switching Between Time Zones
Switching between time zones is crucial when you need to convert a datetime 
from one time zone to another. The pytz  library helps in converting timezone-
aware datetime objects.

Example:

python

Copy code

from datetime import datetime

import pytz

# Timezone-aware datetime

timezone_utc = pytz.utc

utc_time = datetime.now(timezone_utc)

# Convert UTC to New York time

timezone_ny = pytz.timezone("America/New_York")



HiringHustle Python Interview kit-1 26

ny_time = utc_time.astimezone(timezone_ny)

print("New York Time:", ny_time)

astimezone()  converts a timezone-aware datetime  object to another time 
zone.

Section 5.6: Simple Date Arithmetic
You can perform basic arithmetic with datetime  objects, such as adding or 
subtracting time. You can use timedelta  objects for this purpose.

Example:

python

Copy code

from datetime import datetime, timedelta

# Current date and time

now = datetime.now()

# Add 1 day to the current date

new_date = now + timedelta(days=1)

print("Tomorrow's Date:", new_date)

# Subtract 2 days from the current date

previous_date = now - timedelta(days=2)

print("Two Days Ago:", previous_date)

timedelta(days=1)  allows you to add or subtract days to a datetime  object.

Section 5.7: Converting Timestamp to Datetime
You can convert a Unix timestamp (the number of seconds since January 1, 
1970) into a datetime  object using datetime.fromtimestamp() .

Example:



HiringHustle Python Interview kit-1 27

python

Copy code

from datetime import datetime

# Convert Unix timestamp to datetime

timestamp = 1672531199

dt = datetime.fromtimestamp(timestamp)

print("Converted DateTime:", dt)

fromtimestamp()  converts a Unix timestamp into a local datetime  object.

Section 5.8: Subtracting Months from a Date Accurately
Subtracting months from a datetime  object can be tricky because months have 
varying lengths. You can use the dateutil.relativedelta  library for accurate 
month subtraction.

Example:

python

Copy code

from datetime import datetime

from dateutil.relativedelta import relativedelta

dt = datetime(2024, 12, 29)

new_date = dt - relativedelta(months=2)

print("Date After Subtracting 2 Months:", new_date)

relativedelta  from dateutil  allows for more complex date manipulations, 
including accurate month subtraction.

Section 5.9: Parsing an Arbitrary ISO 8601 Timestamp with 
Minimal Libraries
ISO 8601 timestamps are commonly used to represent dates and times. You 
can parse ISO 8601 strings into datetime  objects using Python's built-in datetime  



HiringHustle Python Interview kit-1 28

module.

Example:

python

Copy code

from datetime import datetime

iso_string = "2024-12-29T15:30:00Z"

dt = datetime.fromisoformat(iso_string.replace("Z", "+00:0

0"))

print("Parsed DateTime:", dt)

The fromisoformat()  method can parse ISO 8601 formatted strings, 
converting them into datetime  objects.

Section 5.10: Get an ISO 8601 Timestamp
You can convert a datetime  object to an ISO 8601 formatted string using 
datetime.isoformat() .

Example:

python

Copy code

from datetime import datetime

dt = datetime.now()

iso_string = dt.isoformat()

print("ISO 8601 Timestamp:", iso_string)

The isoformat()  method converts the datetime  object to a string in ISO 8601 
format.

Section 5.11: Parsing a String with a Short Time Zone Name into 
a Timezone-Aware Datetime Object



HiringHustle Python Interview kit-1 29

You can parse a datetime string with a short time zone name (e.g., EST , UTC ) 
into a timezone-aware datetime  object using the pytz  library.

Example:

python

Copy code

from datetime import datetime

import pytz

dt_str = "2024-12-29 15:30:00 EST"

dt = datetime.strptime(dt_str, "%Y-%m-%d %H:%M:%S %Z")

# Convert to a timezone-aware datetime

timezone = pytz.timezone("US/Eastern")

dt_aware = timezone.localize(dt)

print("Timezone-Aware DateTime:", dt_aware)

Section 5.12: Fuzzy Datetime Parsing (Extracting Datetime Out 
of a Text)
Fuzzy parsing allows extracting date and time from arbitrary text. The 
dateutil.parser.parse()  function can be used for this purpose.

Example:

python

Copy code

from dateutil import parser

text = "The meeting is scheduled for 2024-12-29 at 3:00 PM"

dt = parser.parse(text)

print("Extracted DateTime:", dt)

dateutil.parser.parse()  can handle various date formats and extract the date 
from a string.



HiringHustle Python Interview kit-1 30

Section 5.13: Iterate Over Dates
You can iterate over a range of dates using datetime  and timedelta .

Example:

python

Copy code

from datetime import datetime, timedelta

start_date = datetime(2024, 12, 1)

end_date = datetime(2024, 12, 5)

current_date = start_date

while current_date <= end_date:

    print(current_date.strftime("%Y-%m-%d"))

    current_date += timedelta(days=1)

This loop prints each date from 2024-12-01  to 2024-12-05 .

Chapter 6: Date Formatting
In this chapter, we will explore how to format dates and times using Python’s 
datetime  module. Understanding date formatting is essential for presenting or 
storing dates in a specific format, parsing date strings, and calculating time 
differences.

Section 6.1: Time Between Two Date-Times
One of the most common operations with dates is calculating the difference 
between two datetime  objects. Python's datetime  module allows you to subtract 
two datetime  objects and return a timedelta  object, which represents the 
difference between the two times.



HiringHustle Python Interview kit-1 31

Example:

python

Copy code

from datetime import datetime

# Define two datetime objects

start_date = datetime(2024, 12, 1, 10, 0, 0)

end_date = datetime(2024, 12, 29, 15, 30, 0)

# Calculate the time difference

time_difference = end_date - start_date

print("Time Difference:", time_difference)

# Access specific attributes of the timedelta object

print("Days:", time_difference.days)

print("Seconds:", time_difference.seconds)

print("Total seconds:", time_difference.total_seconds())

In this example, the difference between start_date  and end_date  is 
calculated and printed.

The timedelta  object provides the difference in days, seconds, and total 
seconds.

Section 6.2: Outputting Datetime Object to String
To display a datetime  object in a specific string format, you can use the 
strftime()  method, which allows you to format the datetime in a readable way.

Example:

python

Copy code

from datetime import datetime

# Current date and time

now = datetime.now()



HiringHustle Python Interview kit-1 32

# Format datetime as string

formatted_date = now.strftime("%Y-%m-%d %H:%M:%S")

print("Formatted Date:", formatted_date)

# Other common format codes:

# %Y - Year with century (e.g., 2024)

# %m - Month as a zero-padded decimal number (01 to 12)

# %d - Day of the month (01 to 31)

# %H - Hour in 24-hour format (00 to 23)

# %M - Minute (00 to 59)

# %S - Second (00 to 59)

The strftime()  method allows you to convert a datetime  object into a 
formatted string according to the format you specify.

Common format codes include %Y  for the year, %m  for the month, and %d  
for the day.

Section 6.3: Parsing String to Datetime Object
To parse a string representation of a date back into a datetime  object, you can 
use the strptime()  method. This method allows you to specify the exact format 
the string is in so that it can be correctly interpreted.

Example:

python

Copy code

from datetime import datetime

# Date string in a specific format

date_string = "2024-12-29 15:30:00"

# Parse string to datetime object

parsed_date = datetime.strptime(date_string, "%Y-%m-%d %H:%

M:%S")

print("Parsed Datetime:", parsed_date)



HiringHustle Python Interview kit-1 33

# Example with other date formats

# "%B" - Full month name

# "%d" - Day of the month

date_string2 = "December 29, 2024"

parsed_date2 = datetime.strptime(date_string2, "%B %d, %Y")

print("Parsed Date (Full Month):", parsed_date2)

strptime()  converts a string into a datetime  object based on the format you 
specify.

The format codes must match the structure of the date string being parsed. 
For example, %Y-%m-%d  works with 2024-12-29 , while %B %d, %Y  works with 
December 29, 2024 .

Chapter 7: Enum
Enums (short for Enumerations) are a way to define a set of symbolic names 
bound to unique, constant integer values. Python's enum  module allows for the 
creation of enumerations, which help make code more readable and 
maintainable by replacing magic numbers or arbitrary strings with meaningful 
names.

Section 7.1: Creating an Enum (Python 2.4 through 3.3)
In versions of Python before 3.4, creating an enum required defining a class 
that inherits from Enum  in the enum  module. This allows us to define symbolic 
names for values.

Example:

python

Copy code

from enum import Enum

class Color(Enum):

    RED = 1

    GREEN = 2

    BLUE = 3



HiringHustle Python Interview kit-1 34

# Accessing enum members

print(Color.RED)         # Output: Color.RED

print(Color.GREEN.name)  # Output: 'GREEN'

print(Color.BLUE.value)  # Output: 3

In this example, Color  is an enumeration with three members: RED , GREEN , 
and BLUE , each with unique integer values.

Section 7.2: Iteration
Enums can be iterated over, meaning you can loop through all the members of 
an enumeration. This is useful when you need to process or display all the 
symbolic names.

Example:

python

Copy code

from enum import Enum

class Day(Enum):

    MONDAY = 1

    TUESDAY = 2

    WEDNESDAY = 3

    THURSDAY = 4

    FRIDAY = 5

# Iterate through enum

for day in Day:

    print(f"{day.name}: {day.value}")

The iteration outputs all members of the Day  enum, showing both their 
names and values.

Chapter 8: Set



HiringHustle Python Interview kit-1 35

A set  is a built-in Python collection type that is unordered, mutable, and 
contains no duplicate elements. It’s an essential data structure for operations 
like checking membership, removing duplicates from a list, and performing 
mathematical set operations like union, intersection, and difference.

Section 8.1: Operations on Sets
Python sets support several operations, including adding and removing 
elements, testing membership, and performing set operations.

Example:

python

Copy code

# Create a set

my_set = {1, 2, 3, 4, 5}

# Add an element

my_set.add(6)

# Remove an element

my_set.remove(4)

# Check membership

print(3 in my_set)  # Output: True

print(10 in my_set) # Output: False

# Set operations

set_a = {1, 2, 3}

set_b = {3, 4, 5}

print(set_a.union(set_b))    # Output: {1, 2, 3, 4, 5}

print(set_a.intersection(set_b))  # Output: {3}

print(set_a.difference(set_b))    # Output: {1, 2}

add()  adds an element to the set.

remove()  removes an element from the set.



HiringHustle Python Interview kit-1 36

union() , intersection() , and difference()  are methods for common set 
operations.

Section 8.2: Get the Unique Elements of a List
One of the most common use cases for sets is extracting unique elements from 
a list, as sets inherently remove duplicates.

Example:

python

Copy code

# List with duplicates

my_list = [1, 2, 2, 3, 4, 4, 5]

# Convert list to set to get unique elements

unique_elements = set(my_list)

print(unique_elements)  # Output: {1, 2, 3, 4, 5}

Converting a list to a set automatically removes any duplicates.

Section 8.3: Set of Sets
A set of sets refers to a set that contains other sets as its elements. However, 
sets themselves are mutable and therefore cannot contain other sets. To work 
with sets of sets, you can use frozensets, which are immutable sets.

Example:

python

Copy code

# Create frozensets

set_a = frozenset([1, 2])

set_b = frozenset([3, 4])

# Create a set of frozensets

set_of_sets = {set_a, set_b}

print(set_of_sets)  # Output: {frozenset({1, 2}), frozenset



HiringHustle Python Interview kit-1 37

({3, 4})}

frozenset  is used to create immutable sets, which can be added to a regular 
set.

Section 8.4: Set Operations Using Methods and Built-ins
Python provides both methods and built-in functions to perform common set 
operations.

Example:

python

Copy code

# Using methods

set_a = {1, 2, 3}

set_b = {3, 4, 5}

# Union

print(set_a | set_b)    # Output: {1, 2, 3, 4, 5}

# Intersection

print(set_a & set_b)    # Output: {3}

# Difference

print(set_a - set_b)    # Output: {1, 2}

# Using methods

print(set_a.union(set_b))      # Output: {1, 2, 3, 4, 5}

print(set_a.intersection(set_b))  # Output: {3}

print(set_a.difference(set_b))    # Output: {1, 2}

| , & , and  are set operators for union, intersection, and difference, 
respectively.

union() , intersection() , and difference()  are equivalent methods.

Section 8.5: Sets Versus Multisets



HiringHustle Python Interview kit-1 38

A set is a collection of unique elements, while a multiset allows duplicate 
elements. Python sets do not support duplicates, but you can simulate 
multisets using the collections.Counter  class, which counts the occurrences of 
elements.

Chapter 9: Simple Mathematical Operators
In Python, mathematical operations can be performed using standard operators 
and functions. These operators are essential for any arithmetic and scientific 
computations, ranging from simple addition and subtraction to more complex 
operations like exponentiation, trigonometric functions, and logarithms.

Section 9.1: Division
Division in Python can be performed using the /  operator, which returns a 
floating-point result. Python also supports integer division with the //  operator, 
which discards the decimal part and returns an integer.

Example:

python

Copy code

# Division (float result)

result = 10 / 3

print(result)  # Output: 3.3333333333333335

# Integer Division (floor division)

result_int = 10 // 3

print(result_int)  # Output: 3

/  returns a float.

//  returns the quotient as an integer, truncating the result.

Section 9.2: Addition
Addition in Python is straightforward and uses the +  operator. It can be used to 
add numbers, as well as to concatenate strings or combine lists.



HiringHustle Python Interview kit-1 39

Example:

python

Copy code

# Adding two numbers

sum_result = 5 + 3

print(sum_result)  # Output: 8

# Adding strings (concatenation)

greeting = "Hello " + "World!"

print(greeting)  # Output: 'Hello World!'

# Adding lists (concatenation)

list_result = [1, 2] + [3, 4]

print(list_result)  # Output: [1, 2, 3, 4]

The +  operator can be used for numeric addition, string concatenation, and 
list merging.

Section 9.3: Exponentiation
Exponentiation is performed using the **  operator. This operator raises the left 
operand to the power of the right operand.

Example:

python

Copy code

# Exponentiation

result = 2 ** 3

print(result)  # Output: 8

2 ** 3  means 2 raised to the power of 3, which results in 8.

Section 9.4: Trigonometric Functions



HiringHustle Python Interview kit-1 40

Python’s math  module provides a range of trigonometric functions, including 
sin() , cos() , tan() , and others. These functions work with radians, so if you 
need to work with degrees, you’ll need to convert them using the math.radians()  
function.

Example:

python

Copy code

import math

# Sine function

angle_radians = math.radians(30)  # Convert 30 degrees to r

adians

sin_value = math.sin(angle_radians)

print(sin_value)  # Output: 0.49999999999999994

# Cosine function

cos_value = math.cos(angle_radians)

print(cos_value)  # Output: 0.8660254037844387

Trigonometric functions like math.sin()  and math.cos()  expect input in 
radians.

Section 9.5: Inplace Operations
In Python, inplace operations allow you to modify variables directly without 
needing to create a new variable. Inplace operations often use the += , -=  
operators, among others.

Example:

python

Copy code

# Inplace addition

a = 5

a += 3

print(a)  # Output: 8



HiringHustle Python Interview kit-1 41

# Inplace multiplication

b = 4

b *= 2

print(b)  # Output: 8

+=  adds the right operand to the left operand and assigns the result to the 
left operand, modifying the original variable.

Section 9.6: Subtraction
Subtraction is performed using the -  operator in Python.

Example:

python

Copy code

# Subtraction

result = 10 - 4

print(result)  # Output: 6

The  operator simply subtracts the right operand from the left operand.

Section 9.7: Multiplication
Multiplication is performed using the *  operator in Python. This operator can 
be used for numeric multiplication, string repetition, and list multiplication.

Example:

python

Copy code

# Multiplying numbers

result = 4 * 5

print(result)  # Output: 20

# String repetition



HiringHustle Python Interview kit-1 42

repeat_string = "Hello" * 3

print(repeat_string)  # Output: 'HelloHelloHello'

# List repetition

repeat_list = [1, 2] * 3

print(repeat_list)  # Output: [1, 2, 1, 2, 1, 2]

The  operator is versatile and can multiply numbers, repeat strings, or 
expand lists.

Section 9.8: Logarithms
Python’s math  module provides functions for logarithmic calculations, such as 
log() , which can compute logarithms with different bases. The default base is 
e  (natural logarithm), but you can specify any base.

Example:

python

Copy code

import math

# Natural logarithm (base e)

log_value = math.log(10)

print(log_value)  # Output: 2.302585092994046

# Logarithm with a different base (base 10)

log_base10 = math.log(100, 10)

print(log_base10)  # Output: 2.0

math.log()  computes the natural logarithm by default, and you can specify 
another base as the second argument.

Section 9.9: Modulus
The modulus operator ( % ) returns the remainder of a division operation. It is 
often used for determining whether a number is divisible by another or for 



HiringHustle Python Interview kit-1 43

cyclic operations.

Example:

python

Copy code

# Modulus (remainder)

remainder = 10 % 3

print(remainder)  # Output: 1

In the example, 10 % 3  returns 1 , because 3 fits into 10 three times with a 
remainder of 1.

Chapter 10: Bitwise Operators
Bitwise operators in Python allow manipulation of individual bits in numbers. 
These operators are used in a variety of tasks, such as cryptography, network 
programming, and low-level systems programming.

Section 10.1: Bitwise NOT
The bitwise NOT operator ( ~ ) inverts all the bits of a number, changing 1  to 0  
and 0  to 1 .

Example:

python

Copy code

# Bitwise NOT

x = 5  # In binary: 101

result = ~x  # Inverts the bits: 010 (which is -6 in decima

l)

print(result)  # Output: -6

~5  results in 6  because the bitwise NOT of a number is equivalent to (n + 
1) .



HiringHustle Python Interview kit-1 44

Section 10.2: Bitwise XOR (Exclusive OR)
The bitwise XOR operator ( ^ ) compares the bits of two numbers. It returns 1  
if the bits are different, and 0  if they are the same.

Example:

python

Copy code

# Bitwise XOR

x = 5  # In binary: 101

y = 3  # In binary: 011

result = x ^ y  # XOR: 110 (which is 6 in decimal)

print(result)  # Output: 6

5 ^ 3  results in 6  because the binary representation of 5  is 101  and 3  is 
011 . XORing these gives 110  (which is 6  in decimal).

Section 10.3: Bitwise AND
The bitwise AND operator ( & ) compares the bits of two numbers. It returns 1  
if both bits are 1 , and 0  otherwise.

Example:

python

Copy code

# Bitwise AND

x = 5  # In binary: 101

y = 3  # In binary: 011

result = x & y  # AND: 001 (which is 1 in decimal)

print(result)  # Output: 1

5 & 3  results in 1  because the binary representation of 5  is 101  and 3  is 
011 . ANDing these gives 001  (which is 1  in decimal).

Section 10.4: Bitwise OR



HiringHustle Python Interview kit-1 45

The bitwise OR operator ( | ) compares the bits of two numbers. It returns 1  if 
at least one of the bits is 1 , and 0  only if both bits are 0 .

Example:

python

Copy code

# Bitwise OR

x = 5  # In binary: 101

y = 3  # In binary: 011

result = x | y  # OR: 111 (which is 7 in decimal)

print(result)  # Output: 7

5 | 3  results in 7  because the binary representation of 5  is 101  and 3  is 
011 . ORing these gives 111  (which is 7  in decimal).

Section 10.5: Bitwise Left Shift
The bitwise left shift operator ( << ) shifts the bits of a number to the left by a 
specified number of positions. This operation is equivalent to multiplying the 
number by 2  for each position shifted.

Example:

python

Copy code

# Bitwise Left Shift

x = 5  # In binary: 101

result = x << 1  # Shifts left by 1 bit: 1010 (which is 10 

in decimal)

print(result)  # Output: 10

5 << 1  results in 10  because shifting the bits of 5  left by one position 
doubles it ( 101  becomes 1010 ).

Section 10.6: Bitwise Right Shift



HiringHustle Python Interview kit-1 46

The bitwise right shift operator ( >> ) shifts the bits of a number to the right by a 
specified number of positions. This operation is equivalent to dividing the 
number by 2  for each position shifted.

Example:

python

Copy code

# Bitwise Right Shift

x = 5  # In binary: 101

result = x >> 1  # Shifts right by 1 bit: 010 (which is 2 i

n decimal)

print(result)  # Output: 2

5 >> 1  results in 2  because shifting the bits of 5  right by one position 
halves it ( 101  becomes 010 ).

Section 10.7: Inplace Operations
Bitwise operations can be performed inplace, modifying the value of a variable 
directly using the following operators:

&= , |= , ^= , <<= , >>=

Example:

python

Copy code

# Inplace Bitwise Operations

x = 5  # In binary: 101

x &= 3  # AND operation with 3 (011)

print(x)  # Output: 1

y = 5  # In binary: 101

y |= 3  # OR operation with 3 (011)

print(y)  # Output: 7

z = 5  # In binary: 101

z <<= 1  # Left shift by 1 (101 becomes 1010)



HiringHustle Python Interview kit-1 47

print(z)  # Output: 10

x &= 3  modifies x  to 1  (binary 001 ), y |= 3  modifies y  to 7  (binary 111 ), 
and z <<= 1  modifies z  to 10  (binary 1010 ).

Chapter 11: Boolean Operators
Boolean operators in Python are used for logical operations on conditions or 
boolean values. The primary operators are and , or , and not .

Section 11.1: and  and or  are not guaranteed to return a 
boolean
In Python, the and  and or  operators do not always return a boolean value 
( True  or False ). Instead, they return one of the operands, which can be any 
value (not just boolean).

Example:

python

Copy code

# `and` and `or` returning non-boolean values

x = 0

y = 5

result_and = x and y  # Returns 0 (because x is falsy)

result_or = x or y    # Returns 5 (because y is truthy)

print(result_and)  # Output: 0

print(result_or)   # Output: 5

and  returns the first falsy value, or the last truthy value if both are truthy.

or  returns the first truthy value, or the last falsy value if both are falsy.

Section 11.2: A simple example
A simple example shows how the and , or , and not  operators work with 
boolean values.



HiringHustle Python Interview kit-1 48

Example:

python

Copy code

a = True

b = False

# `and` operator

print(a and b)  # Output: False

# `or` operator

print(a or b)  # Output: True

# `not` operator

print(not a)   # Output: False

a and b  returns False  because both operands are not True .

a or b  returns True  because at least one operand is True .

not a  returns False  because a  is True .

Section 11.3: Short-circuit evaluation
Python’s boolean operators use short-circuit evaluation, which means that if 
the result of the operation can be determined by the first operand, the second 
operand is not evaluated.

Example:

python

Copy code

# Short-circuiting in 'and' and 'or'

x = 0

y = 5

# 'and' short-circuits (x is falsy, so y is not evaluated)

result_and = x and y

print(result_and)  # Output: 0



HiringHustle Python Interview kit-1 49

# 'or' short-circuits (x is falsy, so y is evaluated)

result_or = x or y

print(result_or)  # Output: 5

The and  operator short-circuits and returns the first falsy value, without 
evaluating the second operand.

The or  operator short-circuits and returns the first truthy value, but 
evaluates the second operand if the first is falsy.

Section 11.4: and
The and  operator returns True  if both operands are True ; otherwise, it returns 
False .

Example:

python

Copy code

print(True and True)   # Output: True

print(True and False)  # Output: False

Section 11.5: or
The or  operator returns True  if at least one of the operands is True ; otherwise, 
it returns False .

Example:

python

Copy code

print(True or False)   # Output: True

print(False or False)  # Output: False



HiringHustle Python Interview kit-1 50

Section 11.6: not
The not  operator inverts the boolean value of an operand. It returns True  if the 
operand is False , and False  if the operand is True .

Example:

python

Copy code

print(not True)  # Output: False

print(not False) # Output: True

Chapter 12: Operator Precedence
Operator precedence in Python refers to the order in which operators are 
evaluated in an expression. The precedence determines how the operators are 
grouped in the absence of parentheses, which affect the order of evaluation.

Section 12.1: Simple Operator Precedence Examples in Python
Python follows specific rules to determine the precedence of operators. Here is 
a simplified list of the most common operators in order of precedence (from 
highest to lowest):

1. Parentheses ()

2. Exponentiation *

3. Unary plus, Unary minus, and Bitwise NOT +x , x , ~x

4. Multiplication, Division, Floor Division, and Modulus , / , // , %

5. Addition and Subtraction + , 

6. Bitwise Shift Operators << , >>

7. Bitwise AND &

8. Bitwise XOR ^

9. Bitwise OR |



HiringHustle Python Interview kit-1 51

10. Comparison Operators == , != , < , > , <= , >=

11. Boolean NOT not

12. Boolean AND and

13. Boolean OR or

When operators of the same precedence appear, Python evaluates them from 
left to right (this is known as left-associativity), except for the exponentiation 
operator ( ** ), which is right-associative.

Example:

python

Copy code

# Operator Precedence Example

result = 3 + 5 * 2

print(result)  # Output: 13

In this case, multiplication ( * ) has higher precedence than addition ( + ), so 5 * 
2  is evaluated first, and then 3 + 10  is evaluated to give 13 .

Example with Parentheses:

python

Copy code

# Using Parentheses to change precedence

result = (3 + 5) * 2

print(result)  # Output: 16

Here, the parentheses force addition to occur first, and then the result is 
multiplied by 2 , yielding 16 .

Chapter 13: Variable Scope and Binding
In Python, variable scope refers to the area in a program where a variable is 
accessible. The scope of a variable defines how long it exists and how 
accessible it is during program execution. There are several types of scopes:



HiringHustle Python Interview kit-1 52

Local Scope: Variables defined within a function or block are local to that 
block.

Global Scope: Variables defined at the top level of a script or module are 
global.

Nonlocal Scope: A variable that is neither local nor global but is in a higher 
scope, usually used in nested functions.

Section 13.1: Nonlocal Variables
The nonlocal  keyword allows you to work with variables in the nearest 
enclosing scope, excluding the global scope.

Example:

python

Copy code

def outer_function():

    x = 10  # x is a local variable to outer_function

    def inner_function():

        nonlocal x  # Refers to the nearest enclosing scope 

(outer_function)

        x += 5

    inner_function()

    print(x)  # Output: 15

outer_function()

In this example, x  is a nonlocal variable in inner_function() , and modifying it 
changes the value in the outer_function()  scope.

Section 13.2: Global Variables
Global variables are defined outside of any function or class and are accessible 
throughout the program, but they can be modified inside functions using the 
global  keyword.

Example:



HiringHustle Python Interview kit-1 53

python

Copy code

x = 10  # Global variable

def modify_global():

    global x

    x += 5

modify_global()

print(x)  # Output: 15

In this example, global x  tells Python to refer to the global x , and the function 
modifies it.

Section 13.3: Local Variables
Local variables are defined within a function and are only accessible within that 
function.

Example:

python

Copy code

def my_function():

    x = 5  # Local variable

    print(x)

my_function()

# print(x)  # This would raise an error because x is local 

to my_function.

x  in this example is a local variable, and it is not accessible outside of 
my_function() .

Section 13.4: The del  Command



HiringHustle Python Interview kit-1 54

The del  command is used to delete variables or elements from collections like 
lists and dictionaries.

Example:

python

Copy code

x = 10

del x  # Deletes variable x

# print(x)  # This would raise an error because x is delete

d.

You can also use del  to remove items from a list or dictionary:

python

Copy code

lst = [1, 2, 3]

del lst[0]  # Removes the first element of the list

print(lst)  # Output: [2, 3]

Section 13.5: Functions Skip Class Scope When Looking Up 
Names
When Python looks for a variable name, it first checks the local scope (inside 
the function), then the enclosing scopes, and finally the global scope. If the 
variable is not found in any of these scopes, an error is raised.

Example:

python

Copy code

class MyClass:

    x = 20  # Class variable

    def my_method(self):

        x = 10  # Local variable



HiringHustle Python Interview kit-1 55

        print(x)  # Prints local variable, not the class va

riable

obj = MyClass()

obj.my_method()  # Output: 10

In this case, the method my_method  has a local variable x , so it prints 10  
instead of the class variable x .

Section 13.6: Local vs Global Scope
The local scope is specific to the function, and global variables are accessible 
throughout the script. However, global variables can be shadowed by local 
variables if they have the same name.

Example:

python

Copy code

x = 5  # Global variable

def my_function():

    x = 10  # Local variable

    print(x)

my_function()  # Output: 10

print(x)  # Output: 5 (global variable)

my_function()  uses a local variable x , which shadows the global variable x  
during its execution.

Section 13.7: Binding Occurrence
Binding refers to the association of a variable with a value. A variable is bound 
to a value when it is assigned. The binding occurrence occurs at the point 
where a variable is first assigned or modified.



HiringHustle Python Interview kit-1 56

Example:

python

Copy code

def my_function():

    x = 5  # Binding x to 5

my_function()

x  is bound to the value 5  in the local scope of my_function() .

Chapter 14: Conditionals
Conditionals in Python allow the program to make decisions based on certain 
conditions, enabling different execution paths. This chapter covers several 
fundamental concepts related to conditionals, including the ternary operator, 
the use of if , elif , else , and boolean logic.

Section 14.1: Conditional Expression (or "The Ternary 
Operator")
The conditional expression (also known as the ternary operator) provides a 
shorthand way of writing an if-else  statement. It follows the format:

python

Copy code

value_if_true if condition else value_if_false

Example:

python

Copy code

age = 18

status = "Adult" if age >= 18 else "Minor"



HiringHustle Python Interview kit-1 57

print(status)  # Output: "Adult"

In this example, the ternary operator checks if age  is greater than or equal to 
18. If the condition is true, it assigns "Adult"  to status ; otherwise, it assigns 
"Minor" .

Section 14.2: if , elif , and else
The if , elif , and else  statements allow you to execute blocks of code based 
on conditions:

if : Evaluates the condition and executes the corresponding block of code 
if the condition is True .

elif : Stands for "else if" and is used to evaluate additional conditions if the 
if  condition is False .

else : Executes the corresponding block of code if all preceding conditions 
are False .

Example:

python

Copy code

age = 20

if age < 18:

    print("Minor")

elif age == 18:

    print("Just an adult")

else:

    print("Adult")

If age  is less than 18, it prints "Minor" .

If age  equals 18, it prints "Just an adult" .

If age  is greater than 18, it prints "Adult" .

Section 14.3: Truth Values



HiringHustle Python Interview kit-1 58

In Python, conditional expressions evaluate truth values. These truth values are 
determined based on whether a condition is True  or False . Python uses the 
following rules:

False values: None , False , 0 , empty sequences (e.g., [] , () , "" ), and 
empty dictionaries {} .

True values: Everything else, including non-zero numbers, non-empty 
strings, lists, tuples, etc.

Example:

python

Copy code

if []:  # Empty list is considered False

    print("This won't print")

else:

    print("This will print")

Section 14.4: Boolean Logic Expressions
Boolean logic expressions allow you to combine multiple conditions using 
logical operators:

and : Returns True  if both operands are True .

or : Returns True  if at least one operand is True .

not : Reverses the truth value (i.e., True  becomes False , and vice versa).

Example:

python

Copy code

x = 10

y = 5

if x > 5 and y < 10:

    print("Both conditions are true")



HiringHustle Python Interview kit-1 59

The condition x > 5 and y < 10  evaluates to True  because both sub-
conditions are true.

Section 14.5: Using the cmp  Function to Get the Comparison 
Result of Two Objects
In earlier versions of Python (before 3.x), the cmp()  function was used to 
compare two objects and return:

0  if the objects are equal

1  if the first object is greater

1  if the first object is smaller

However, cmp()  is no longer available in Python 3.x. Instead, you can use 
comparison operators like == , > , and < .

Example (in Python 2.x):

python

Copy code

result = cmp(3, 4)  # Returns -1

print(result)

In Python 3.x, you can simply use:

python

Copy code

result = 3 < 4  # Returns True

Section 14.6: Else Statement
The else  statement provides an alternative block of code that is executed 
when the if  or elif  conditions are not true.

Example:



HiringHustle Python Interview kit-1 60

python

Copy code

number = 10

if number % 2 == 0:

    print("Even number")

else:

    print("Odd number")

In this example, if the condition number % 2 == 0  is True , "Even number"  will be 
printed; otherwise, "Odd number"  will be printed.

Section 14.7: Testing if an Object is None  and Assigning It
In Python, None  is a special value representing the absence of a value. To test if 
an object is None , you use the is  operator:

Example:

python

Copy code

x = None

if x is None:

    print("x is None")

else:

    print("x is not None")

The condition x is None  checks whether x  is the special None  object.

Section 14.8: If Statement
The if  statement is the most basic form of conditional execution. It evaluates a 
condition and executes a block of code if the condition is true.

Example:

python

Copy code



HiringHustle Python Interview kit-1 61

temperature = 30

if temperature > 25:

    print("It's hot outside!")

If temperature  is greater than 25, the message "It's hot outside!"  will be 
printed.

Chapter 15: Comparisons
In this chapter, we explore how Python handles comparisons between values 
and objects. Comparisons are essential for controlling the flow of execution in 
programs and for evaluating conditions in various situations. This chapter 
covers chain comparisons, the difference between is  and == , comparison 
operators, and comparing objects.

Section 15.1: Chain Comparisons
Python supports chain comparisons, where you can evaluate multiple 
comparisons in a single statement. This is equivalent to combining conditions 
using logical operators but in a more readable way.

Syntax:

python

Copy code

x < y < z

This can be interpreted as:

python

Copy code

x < y and y < z



HiringHustle Python Interview kit-1 62

Example:

python

Copy code

x = 3

y = 5

z = 10

if x < y < z:

    print("x is less than y and y is less than z")

In this case, both x < y  and y < z  are true, so the output is:

csharp

Copy code

x is less than y and y is less than z

Section 15.2: Comparison by is  vs ==
In Python, ==  and is  are both used for comparison, but they have different 
meanings:

== : Checks if the values of two objects are equal.

is : Checks if two objects refer to the same location in memory (i.e., if they 
are the same object).

Example:

python

Copy code

a = [1, 2, 3]

b = [1, 2, 3]

c = a

print(a == b)  # True, because they have the same value

print(a is b)  # False, because they are different objects 



HiringHustle Python Interview kit-1 63

in memory

print(a is c)  # True, because c refers to the same object 

as a

a == b  returns True  because both lists have the same content.

a is b  returns False  because a  and b  are two different objects in memory.

a is c  returns True  because c  refers to the same list object as a .

Section 15.3: Greater Than or Less Than
Python provides comparison operators to check if one value is greater than or 
less than another:

> : Greater than

< : Less than

>= : Greater than or equal to

<= : Less than or equal to

Example:

python

Copy code

x = 10

y = 5

print(x > y)  # True, because 10 is greater than 5

print(x < y)  # False, because 10 is not less than 5

print(x >= 10)  # True, because 10 is greater than or equal 

to 10

print(y <= 10)  # True, because 5 is less than or equal to 

10

Section 15.4: Not Equal To



HiringHustle Python Interview kit-1 64

The !=  operator checks if two values are not equal. It returns True  if the values 
are different and False  if they are the same.

Example:

python

Copy code

a = 10

b = 20

print(a != b)  # True, because 10 is not equal to 20

Section 15.5: Equal To
The ==  operator checks if two values are equal. It returns True  if the values are 
the same and False  if they are different.

Example:

python

Copy code

a = "hello"

b = "hello"

c = "world"

print(a == b)  # True, because both strings are the same

print(a == c)  # False, because the strings are different

Section 15.6: Comparing Objects
When comparing objects in Python, we can either use the ==  operator to 
compare their values or the is  operator to check if they refer to the same 
memory location. Python provides a variety of comparison methods depending 
on the object type, including the __eq__ , __lt__ , __le__ , __gt__ , __ge__ , and 
__ne__  methods that can be overridden for custom objects.



HiringHustle Python Interview kit-1 65

Example: Comparing Custom Objects

python

Copy code

class Person:

    def __init__(self, name, age):

        self.name = name

        self.age = age

    def __eq__(self, other):

        return self.name == other.name and self.age == othe

r.age

# Create two objects with the same data

person1 = Person("Alice", 30)

person2 = Person("Alice", 30)

print(person1 == person2)  # True, because the data is the 

same

# Create two objects with different data

person3 = Person("Bob", 25)

print(person1 == person3)  # False, because the data is dif

ferent

In this example, the __eq__  method is defined to compare two Person  objects 
based on their name  and age  attributes.

Chapter 16: Loops
Loops are a core part of programming in Python, allowing you to execute a 
block of code multiple times under specific conditions. This chapter explores 
the various types of loops in Python and their unique behaviors.

Section 16.1: Break and Continue in Loops
The break  and continue  statements are used within loops to alter their normal 
flow:



HiringHustle Python Interview kit-1 66

break : Terminates the loop entirely, stopping any further iterations.

continue : Skips the current iteration and moves to the next one.

Example:

python

Copy code

# Break example

for i in range(5):

    if i == 3:

        break

    print(i)

# Output:

# 0

# 1

# 2

# Continue example

for i in range(5):

    if i == 3:

        continue

    print(i)

# Output:

# 0

# 1

# 2

# 4

In the first example, the loop breaks when i  equals 3. In the second example, 
the loop skips over i == 3  and continues with the next iteration.

Section 16.2: For Loops
The for  loop in Python is used to iterate over a sequence (like a list, tuple, 
dictionary, or string).



HiringHustle Python Interview kit-1 67

Syntax:

python

Copy code

for item in iterable:

    # Do something with item

Example:

python

Copy code

for char in "hiringhustle":

    print(char)

This loop prints each character in the string "hiringhustle":

css

Copy code

h

i

r

i

n

g

h

u

s

t

l

e

Section 16.3: Iterating Over Lists
You can iterate over lists using a for  loop. The loop will go through each 
element in the list one by one.



HiringHustle Python Interview kit-1 68

Example:

python

Copy code

names = ["Alice", "Bob", "Charlie"]

for name in names:

    print(name)

This loop prints:

Copy code

Alice

Bob

Charlie

Section 16.4: Loops with an "Else" Clause
The else  clause can be used in loops to specify a block of code to execute 
after the loop finishes normally (i.e., it did not terminate via a break  statement).

Example:

python

Copy code

for char in "hiringhustle":

    if char == "u":

        break

else:

    print("Completed the loop without breaking.")

Since the loop breaks when char  equals "u" , the else  block is skipped. If no 
break  occurs, the else  block will run.

Section 16.5: The Pass Statement



HiringHustle Python Interview kit-1 69

The pass  statement is a placeholder. It does nothing and is used when a 
statement is syntactically required but you don't want to implement anything in 
that spot.

Example:

python

Copy code

for i in range(5):

    if i == 3:

        pass  # Placeholder for future code

    print(i)

This loop runs as usual, but when i  equals 3, the pass  statement is executed, 
which does nothing.

Section 16.6: Iterating Over Dictionaries
When iterating over a dictionary, you can access its keys, values, or both using 
methods like .keys() , .values() , and .items() .

Example:

python

Copy code

my_dict = {"name": "Alice", "age": 25, "city": "New York"}

# Iterating over keys

for key in my_dict:

    print(key)

# Iterating over values

for value in my_dict.values():

    print(value)

# Iterating over key-value pairs

for key, value in my_dict.items():



HiringHustle Python Interview kit-1 70

    print(key, value)

Output:

sql

Copy code

name

age

city

Alice

25

New York

name Alice

age 25

city New York

Section 16.7: The "Half Loop" do-while
Python does not have a built-in do-while  loop like some other languages, but 
you can mimic this behavior using a while  loop that runs at least once and 
checks the condition at the end.

Example:

python

Copy code

i = 0

while True:

    print(i)

    i += 1

    if i >= 3:

        break



HiringHustle Python Interview kit-1 71

This loop prints:

Copy code

0

1

2

Section 16.8: Looping and Unpacking
In Python, you can unpack elements in a loop, especially useful when working 
with tuples or lists.

Example:

python

Copy code

pairs = [(1, 'a'), (2, 'b'), (3, 'c')]

for num, letter in pairs:

    print(num, letter)

This loop prints:

css

Copy code

1 a

2 b

3 c

Section 16.9: Iterating Different Portions of a List with Different 
Step Size
You can specify a step size in a loop to iterate over parts of a list, which is done 
using the range()  function.



HiringHustle Python Interview kit-1 72

Example:

python

Copy code

names = ["Alice", "Bob", "Charlie", "David", "Eve"]

# Iterate over every second name

for name in names[::2]:

    print(name)

Output:

Copy code

Alice

Charlie

Eve

Section 16.10: While Loop
A while  loop continues to execute a block of code as long as a specified 
condition is true.

Syntax:

python

Copy code

while condition:

    # Do something

Example:

python

Copy code

i = 0

while i < 3:



HiringHustle Python Interview kit-1 73

    print("hiringhustle"[i])  # Prints each character until 

i reaches 3

    i += 1

This loop prints:

css

Copy code

h

i

r

Chapter 17: Arrays
In Python, arrays are often used for storing and manipulating collections of data 
in a compact way. While Python lists are frequently used, the array  module 
allows for more efficient handling of homogeneous data (same data type) in an 
array-like structure.

Section 17.1: Access Individual Elements Through Indexes
You can access elements in an array using indices, just like lists. The index 
starts at 0  and increases by 1  for each subsequent element.

Example:

python

Copy code

import array

arr = array.array('u', 'hiringhustle')  # 'u' is the type c

ode for unicode characters

print(arr[0])  # Accessing first element



HiringHustle Python Interview kit-1 74

print(arr[1])  # Accessing second element

Output:

css

Copy code

h

i

Section 17.2: Basic Introduction to Arrays
Arrays are similar to lists but require elements to be of the same type. The 
array  module in Python provides efficient storage for basic types.

Example:

python

Copy code

import array

# Creating an array of integers

arr = array.array('i', [1, 2, 3, 4, 5])

print(arr)

Section 17.3: Append Any Value to the Array Using append()  
Method
You can add a new item to the end of the array using the append()  method.

Example:

python

Copy code

arr = array.array('i', [1, 2, 3])

arr.append(4)  # Adds 4 to the end



HiringHustle Python Interview kit-1 75

print(arr)

Output:

c

Copy code

array('i', [1, 2, 3, 4])

Section 17.4: Insert Value in an Array Using insert()  Method
The insert()  method allows you to add an element at a specific position in the 
array.

Example:

python

Copy code

arr = array.array('i', [1, 2, 3])

arr.insert(1, 10)  # Inserts 10 at index 1

print(arr)

Output:

c

Copy code

array('i', [1, 10, 2, 3])

Section 17.5: Extend Python Array Using extend()  Method
You can add multiple elements to the array using the extend()  method.

Example:



HiringHustle Python Interview kit-1 76

python

Copy code

arr = array.array('i', [1, 2, 3])

arr.extend([4, 5, 6])  # Adds the elements of the list to t

he array

print(arr)

Output:

c

Copy code

array('i', [1, 2, 3, 4, 5, 6])

Section 17.6: Add Items from List into Array Using fromlist()  
Method
This method adds elements from a Python list to the end of the array.

Example:

python

Copy code

arr = array.array('i', [1, 2])

arr.fromlist([3, 4, 5])  # Adds the list elements to the ar

ray

print(arr)

Output:

c

Copy code

array('i', [1, 2, 3, 4, 5])



HiringHustle Python Interview kit-1 77

Section 17.7: Remove Any Array Element Using remove()  
Method
The remove()  method removes the first occurrence of a specified element.

Example:

python

Copy code

arr = array.array('i', [1, 2, 3, 4, 5])

arr.remove(3)  # Removes the element 3

print(arr)

Output:

c

Copy code

array('i', [1, 2, 4, 5])

Section 17.8: Remove Last Array Element Using pop()  Method
The pop()  method removes and returns the last element of the array.

Example:

python

Copy code

arr = array.array('i', [1, 2, 3, 4])

last_item = arr.pop()  # Removes the last item (4)

print(last_item)  # Prints: 4

print(arr)

Output:

c

Copy code



HiringHustle Python Interview kit-1 78

4

array('i', [1, 2, 3])

Section 17.9: Fetch Any Element Through Its Index Using 
index()  Method

The index()  method returns the index of the first occurrence of a specified 
value.

Example:

python

Copy code

arr = array.array('i', [1, 2, 3, 4])

index_of_three = arr.index(3)  # Finds index of 3

print(index_of_three)

Output:

Copy code

2

Section 17.10: Reverse a Python Array Using reverse()  
Method
The reverse()  method reverses the order of the elements in the array.

Example:

python

Copy code

arr = array.array('i', [1, 2, 3, 4])

arr.reverse()



HiringHustle Python Interview kit-1 79

print(arr)

Output:

c

Copy code

array('i', [4, 3, 2, 1])

Section 17.11: Get Array Buffer Information Through 
buffer_info()  Method

This method returns a tuple with the address of the array’s buffer and the 
number of elements.

Example:

python

Copy code

arr = array.array('i', [1, 2, 3, 4])

buffer_info = arr.buffer_info()

print(buffer_info)

Output:

scss

Copy code

(42949672960, 4)

Section 17.12: Check for Number of Occurrences of an Element 
Using count()  Method
The count()  method returns the number of occurrences of a specified element.

Example:



HiringHustle Python Interview kit-1 80

python

Copy code

arr = array.array('i', [1, 2, 3, 1, 1, 4])

count_of_ones = arr.count(1)

print(count_of_ones)

Output:

Copy code

3

Section 17.13: Convert Array to String Using tostring()  
Method
The tostring()  method converts the array to a string representation. Note: 
tostring()  is deprecated, and it’s better to use tobytes() .

Example:

python

Copy code

arr = array.array('u', 'hiringhustle')

string_rep = arr.tobytes()  # Using the correct method

print(string_rep)

Section 17.14: Convert Array to a Python List with Same 
Elements Using tolist()  Method
The tolist()  method converts an array to a regular Python list.

Example:

python

Copy code



HiringHustle Python Interview kit-1 81

arr = array.array('i', [1, 2, 3, 4])

list_rep = arr.tolist()

print(list_rep)

Output:

csharp

Copy code

[1, 2, 3, 4]

Section 17.15: Append a String to Char Array Using 
fromstring()  Method

The fromstring()  method allows you to append characters from a string to a 
character array.

Example:

python

Copy code

arr = array.array('u', 'hiringhustle')

arr.fromstring('ManoharJoshi')  # Adds the string to the ar

ray

print(arr)

Output:

c

Copy code

array('u', 'hiringhustleManoharJoshi')

python

Copy code



HiringHustle Python Interview kit-1 82

from collections import Counter

# Multiset using Counter

multiset = Counter([1, 1, 2, 2, 2, 3])

print(multiset)  # Output: Counter({2: 3, 1: 2, 3: 1})

# Accessing the count of an element

print(multiset[2])  # Output: 3

Counter  helps create a multiset-like structure, where elements can appear 
multiple times.

Chapter 18: Multidimensional Arrays
Multidimensional arrays are arrays that contain other arrays as elements. These 
are often used to represent matrices, grids, or more complex structures such as 
images.

Section 18.1: Lists in Lists
In Python, you can create a list of lists, which can act like a 2D array. This 
allows you to represent rows and columns of data.

Example:

python

Copy code

# List of lists (2D array)

matrix = [

    [1, 2, 3],

    [4, 5, 6],

    [7, 8, 9]

]

# Accessing elements

print(matrix[0][0])  # First row, first element



HiringHustle Python Interview kit-1 83

print(matrix[1][2])  # Second row, third element

Output:

Copy code

1

6

Section 18.2: Lists in Lists in Lists
You can have lists inside lists inside other lists, forming a multidimensional 
array of more than two dimensions.

Example:

python

Copy code

# 3D Array (List of lists of lists)

cube = [

    [

        [1, 2],

        [3, 4]

    ],

    [

        [5, 6],

        [7, 8]

    ]

]

# Accessing elements

print(cube[0][1][1])  # First 2D array, second row, second 

element

Output:



HiringHustle Python Interview kit-1 84

Copy code

4

Chapter 19: Dictionary
Dictionaries are a collection of key-value pairs. They are unordered, mutable, 
and indexed by keys, allowing for fast lookups, inserts, and updates.

Section 19.1: Introduction to Dictionary
A dictionary is a collection of key-value pairs, where each key is unique. You 
can access values by referring to their keys.

Example:

python

Copy code

# Creating a dictionary

student = {

    'name': 'John',

    'age': 25,

    'major': 'Computer Science'

}

# Accessing values

print(student['name'])  # Output: John

Section 19.2: Avoiding KeyError Exceptions
When accessing dictionary values, you may encounter a KeyError  if the key 
doesn’t exist. To avoid this, you can use methods like get() .

Example:

python

Copy code



HiringHustle Python Interview kit-1 85

# Using get() method to avoid KeyError

student = {

    'name': 'John',

    'age': 25

}

print(student.get('major', 'Not Found'))  # Output: Not Fou

nd

Section 19.3: Iterating Over a Dictionary
You can iterate over the keys, values, or key-value pairs of a dictionary using 
loops.

Example:

python

Copy code

# Iterating over dictionary

student = {

    'name': 'John',

    'age': 25,

    'major': 'Computer Science'

}

# Iterating through keys and values

for key, value in student.items():

    print(f'{key}: {value}')

Output:

makefile

Copy code

name: John

age: 25



HiringHustle Python Interview kit-1 86

major: Computer Science

Section 19.4: Dictionary with Default Values
You can use the defaultdict  from the collections  module to provide a default 
value for keys that don’t exist.

Example:

python

Copy code

from collections import defaultdict

# Creating a defaultdict with int as default value

inventory = defaultdict(int)

inventory['apples'] += 5  # Adds 5 apples

inventory['bananas'] += 3  # Adds 3 bananas

print(inventory)  # Output: defaultdict(<class 'int'>, {'ap

ples': 5, 'bananas': 3})

Section 19.5: Merging Dictionaries
You can merge dictionaries using the update()  method or the |  operator in 
Python 3.9+.

Example:

python

Copy code

dict1 = {'a': 1, 'b': 2}

dict2 = {'c': 3, 'd': 4}

# Using update() method

dict1.update(dict2)



HiringHustle Python Interview kit-1 87

print(dict1)  # Output: {'a': 1, 'b': 2, 'c': 3, 'd': 4}

# Using | operator in Python 3.9+

merged_dict = dict1 | dict2

print(merged_dict)  # Output: {'a': 1, 'b': 2, 'c': 3, 'd': 

4}

Section 19.6: Accessing Keys and Values
You can access the keys and values of a dictionary using the keys()  and 
values()  methods.

Example:

python

Copy code

student = {

    'name': 'John',

    'age': 25,

    'major': 'Computer Science'

}

# Accessing keys

print(student.keys())  # Output: dict_keys(['name', 'age', 

'major'])

# Accessing values

print(student.values())  # Output: dict_values(['John', 25, 

'Computer Science'])

Section 19.7: Accessing Values of a Dictionary
You can access the values of a dictionary using the get()  method or by directly 
referencing the key.

Example:



HiringHustle Python Interview kit-1 88

python

Copy code

student = {

    'name': 'John',

    'age': 25,

    'major': 'Computer Science'

}

# Using get() method

print(student.get('age'))  # Output: 25

# Directly referencing the key

print(student['major'])  # Output: Computer Science

Section 19.8: Creating a Dictionary
Dictionaries can be created using curly braces {}  or the dict()  constructor.

Example:

python

Copy code

# Creating a dictionary using curly braces

student = {'name': 'John', 'age': 25}

# Creating a dictionary using dict()

student2 = dict(name='John', age=25)

print(student)  # Output: {'name': 'John', 'age': 25}

print(student2)  # Output: {'name': 'John', 'age': 25}

Section 19.9: Creating an Ordered Dictionary
Python 3.7+ maintains the insertion order of keys. However, for earlier versions, 
you can use OrderedDict  from the collections  module to maintain order.



HiringHustle Python Interview kit-1 89

Example:

python

Copy code

from collections import OrderedDict

# Creating an ordered dictionary

ordered_dict = OrderedDict([

    ('first', 1),

    ('second', 2),

    ('third', 3)

])

print(ordered_dict)  # Output: OrderedDict([('first', 1), 

('second', 2), ('third', 3)])

Section 19.10: Unpacking Dictionaries Using the *  Operator
You can use the **  operator to unpack dictionaries when passing them as 
arguments to functions or when combining dictionaries.

Example:

python

Copy code

dict1 = {'name': 'John'}

dict2 = {'age': 25}

# Unpacking dictionaries

merged = {**dict1, **dict2}

print(merged)  # Output: {'name': 'John', 'age': 25}

Section 19.11: The Trailing Comma
The trailing comma can be used in dictionaries, especially when adding new 
key-value pairs.



HiringHustle Python Interview kit-1 90

Example:

python

Copy code

student = {

    'name': 'John',

    'age': 25,

    'major': 'Computer Science',

}

# Trailing comma allows you to add new keys easily

print(student)

Section 19.12: The dict()  Constructor
The dict()  constructor is another way to create dictionaries, which can be 
useful for more complex dictionary creation.

Example:

python

Copy code

# Creating dictionary using dict constructor

student = dict(name='John', age=25, major='Computer Scienc

e')

print(student)

Section 19.13: Dictionaries Example
Here’s a simple example of using dictionaries:

Example:

python

Copy code

student = {



HiringHustle Python Interview kit-1 91

    'name': 'John',

    'age': 25,

    'major': 'Computer Science'

}

# Update a value

student['age'] = 26

# Add a new key-value pair

student['year'] = 'Senior'

print(student)

Section 19.14: All Combinations of Dictionary Values
You can find all combinations of dictionary values using itertools.product()  if 
needed.

Example:

python

Copy code

from itertools import product

dict1 = {'a': [1, 2], 'b': [3, 4]}

# Getting all combinations of dictionary values

combinations = list(product(*dict1.values()))

print(combinations)  # Output: [(1, 3), (1, 4), (2, 3), (2, 

4)]

Chapter 20: List
Lists in Python are versatile and commonly used data structures that store 
ordered collections of items. Lists can hold elements of different data types and 



HiringHustle Python Interview kit-1 92

allow for easy manipulation and access to these elements.

Section 20.1: List Methods and Supported Operators
Python provides a wide range of built-in methods and operators for working 
with lists. Some common methods include:

append(): Adds an element to the end of the list.

insert(): Inserts an element at a specific index.

remove(): Removes the first occurrence of a value.

pop(): Removes and returns an element at a specific index.

extend(): Adds multiple elements from another iterable.

clear(): Removes all elements from the list.

index(): Returns the index of the first occurrence of a value.

count(): Returns the number of occurrences of a value.

sort(): Sorts the list in ascending order.

reverse(): Reverses the list.

Example:

python

Copy code

fruits = ['apple', 'banana', 'cherry']

# Using append() to add an element

fruits.append('orange')

# Using insert() to add an element at a specific position

fruits.insert(1, 'kiwi')

# Using remove() to remove an element

fruits.remove('banana')

print(fruits)  # Output: ['apple', 'kiwi', 'cherry', 'orang



HiringHustle Python Interview kit-1 93

e']

Section 20.2: Accessing List Values
You can access list values by their index. List indexing starts from 0 for the first 
element. Negative indices can be used to access elements from the end of the 
list.

Example:

python

Copy code

fruits = ['apple', 'banana', 'cherry']

print(fruits[0])   # Output: apple

print(fruits[-1])  # Output: cherry

Section 20.3: Checking if List is Empty
You can check whether a list is empty using the len()  function or directly by 
evaluating the list in a boolean context.

Example:

python

Copy code

fruits = []

if not fruits:

    print("The list is empty.")  # Output: The list is empt

y.

Section 20.4: Iterating Over a List



HiringHustle Python Interview kit-1 94

You can iterate over the elements of a list using loops like for  or list 
comprehensions.

Example:

python

Copy code

fruits = ['apple', 'banana', 'cherry']

# Using a for loop

for fruit in fruits:

    print(fruit)

Output:

Copy code

apple

banana

cherry

Section 20.5: Checking Whether an Item is in a List
You can check if an item exists in a list using the in  operator.

Example:

python

Copy code

fruits = ['apple', 'banana', 'cherry']

if 'banana' in fruits:

    print("Banana is in the list.")  # Output: Banana is in 

the list.

Section 20.6: Any and All



HiringHustle Python Interview kit-1 95

The any()  function returns True  if at least one element in the list is true. The 
all()  function returns True  only if all elements in the list are true.

Example:

python

Copy code

numbers = [0, 1, 2, 3]

print(any(numbers))  # Output: True (because 1, 2, 3 are tr

uthy)

print(all(numbers))  # Output: False (because 0 is falsy)

Section 20.7: Reversing List Elements
You can reverse a list using the reverse()  method or slicing.

Example:

python

Copy code

fruits = ['apple', 'banana', 'cherry']

# Using reverse()

fruits.reverse()

print(fruits)  # Output: ['cherry', 'banana', 'apple']

# Using slicing

print(fruits[::-1])  # Output: ['apple', 'banana', 'cherr

y']

Section 20.8: Concatenate and Merge Lists
You can concatenate (combine) lists using the +  operator or the extend()  
method.



HiringHustle Python Interview kit-1 96

Example:

python

Copy code

list1 = [1, 2, 3]

list2 = [4, 5, 6]

# Using + operator

merged = list1 + list2

print(merged)  # Output: [1, 2, 3, 4, 5, 6]

# Using extend()

list1.extend(list2)

print(list1)  # Output: [1, 2, 3, 4, 5, 6]

Section 20.9: Length of a List
You can get the length (number of elements) of a list using the len()  function.

Example:

python

Copy code

fruits = ['apple', 'banana', 'cherry']

print(len(fruits))  # Output: 3

Section 20.10: Remove Duplicate Values in List
You can remove duplicates from a list by converting it to a set and back to a list, 
or by using a loop.

Example:

python

Copy code



HiringHustle Python Interview kit-1 97

fruits = ['apple', 'banana', 'cherry', 'banana', 'apple']

# Using set to remove duplicates

fruits = list(set(fruits))

print(fruits)  # Output: ['apple', 'banana', 'cherry']

# Using loop (preserving order)

fruits = ['apple', 'banana', 'cherry', 'banana', 'apple']

unique_fruits = []

for fruit in fruits:

    if fruit not in unique_fruits:

        unique_fruits.append(fruit)

print(unique_fruits)  # Output: ['apple', 'banana', 'cherr

y']

Section 20.11: Comparison of Lists
Lists can be compared using relational operators, and they will be evaluated 
element by element.

Example:

python

Copy code

list1 = [1, 2, 3]

list2 = [1, 2, 3]

print(list1 == list2)  # Output: True

list3 = [4, 5, 6]

print(list1 < list3)  # Output: True

Section 20.12: Accessing Values in Nested List
You can access values in a nested list (a list inside another list) by using 
multiple indices.



HiringHustle Python Interview kit-1 98

Example:

python

Copy code

nested_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

# Accessing nested elements

print(nested_list[0][1])  # Output: 2

print(nested_list[2][0])  # Output: 7

Section 20.13: Initializing a List to a Fixed Number of Elements
You can initialize a list with a fixed number of elements by repeating a value 
using multiplication.

Example:

python

Copy code

# Initializing a list with 5 zeros

zeros = [0] * 5

print(zeros)  # Output: [0, 0, 0, 0, 0]

Chapter 21: List Comprehensions
List comprehensions provide a concise way to create and manipulate lists. 
They allow you to perform complex operations in a single line of code, which 
improves readability and efficiency. This chapter explores various types of 
comprehensions, including conditional comprehensions, dictionary 
comprehensions, and other advanced use cases.

Section 21.1: List Comprehensions
A list comprehension offers a compact way to process all or part of the 
elements in a sequence and return a list with the results. The syntax is:



HiringHustle Python Interview kit-1 99

python

Copy code

[expression for item in iterable]

Example:

python

Copy code

# Simple list comprehension to square numbers

numbers = [1, 2, 3, 4]

squares = [n**2 for n in numbers]

print(squares)  # Output: [1, 4, 9, 16]

Section 21.2: Conditional List Comprehensions
You can add an if  condition to a list comprehension to filter elements based 
on a condition.

Example:

python

Copy code

# List comprehension with a condition to get even numbers

numbers = [1, 2, 3, 4, 5, 6]

even_numbers = [n for n in numbers if n % 2 == 0]

print(even_numbers)  # Output: [2, 4, 6]

You can also use else  in a list comprehension to apply different operations 
depending on the condition.

Example:

python

Copy code



HiringHustle Python Interview kit-1 100

# Conditional operation with 'else'

numbers = [1, 2, 3, 4, 5]

results = [n**2 if n % 2 == 0 else n**3 for n in numbers]

print(results)  # Output: [1, 4, 27, 16, 125]

Section 21.3: Avoid Repetitive and Expensive Operations Using 
Conditional Clause
By placing conditions within list comprehensions, you can prevent repetitive or 
expensive operations on elements that do not meet the condition.

Example:

python

Copy code

# Avoid repetitive expensive operation by skipping unnecess

ary values

numbers = [1, 2, 3, 4, 5]

squared_odd_numbers = [n**2 for n in numbers if n % 2 != 0]

print(squared_odd_numbers)  # Output: [1, 9, 25]

This helps optimize your code by only performing operations on necessary 
elements.

Section 21.4: Dictionary Comprehensions
In addition to list comprehensions, Python supports dictionary comprehensions, 
which create a dictionary from an iterable.

Syntax:

python

Copy code

{key_expression: value_expression for item in iterable}



HiringHustle Python Interview kit-1 101

Example:

python

Copy code

# Dictionary comprehension to create a square map

numbers = [1, 2, 3, 4]

square_dict = {n: n**2 for n in numbers}

print(square_dict)  # Output: {1: 1, 2: 4, 3: 9, 4: 16}

Section 21.5: List Comprehensions with Nested Loops
You can use multiple for  clauses in list comprehensions to handle nested 
iterations. This is particularly useful for working with multidimensional data 
structures.

Example:

python

Copy code

# List comprehension with nested loops to flatten a list of 

lists

nested_lists = [[1, 2], [3, 4], [5, 6]]

flattened = [item for sublist in nested_lists for item in s

ublist]

print(flattened)  # Output: [1, 2, 3, 4, 5, 6]

Section 21.6: Generator Expressions
Generator expressions are similar to list comprehensions but return a generator 
instead of a list, which is more memory efficient, especially for large datasets.

Syntax:

python

Copy code



HiringHustle Python Interview kit-1 102

(expression for item in iterable)

Example:

python

Copy code

# Generator expression to calculate squares

numbers = [1, 2, 3, 4]

squares_gen = (n**2 for n in numbers)

# Using the generator

for square in squares_gen:

    print(square)

Section 21.7: Set Comprehensions
Set comprehensions are similar to list comprehensions but create a set. This 
ensures that duplicate elements are automatically removed.

Syntax:

python

Copy code

{expression for item in iterable}

Example:

python

Copy code

# Set comprehension to get unique squares

numbers = [1, 2, 3, 4, 4]

squares_set = {n**2 for n in numbers}

print(squares_set)  # Output: {16, 1, 4, 9}



HiringHustle Python Interview kit-1 103

Section 21.8: Refactoring Filter and Map to List 
Comprehensions
You can refactor common functions like filter()  and map()  into list 
comprehensions to improve readability.

Example:

python

Copy code

# Using filter

numbers = [1, 2, 3, 4, 5]

even_numbers_filter = list(filter(lambda x: x % 2 == 0, num

bers))

# Refactoring to list comprehension

even_numbers_comprehension = [x for x in numbers if x % 2 =

= 0]

print(even_numbers_comprehension)  # Output: [2, 4]

Section 21.9: Comprehensions Involving Tuples
You can also use comprehensions to create tuples. This is useful when you 
need to generate ordered pairs or perform transformations.

Example:

python

Copy code

# Tuple comprehension

numbers = [1, 2, 3, 4]

tuples = tuple((n, n**2) for n in numbers)

print(tuples)  # Output: ((1, 1), (2, 4), (3, 9), (4, 16))

Section 21.10: Counting Occurrences Using Comprehension



HiringHustle Python Interview kit-1 104

List comprehensions can be used to count occurrences of specific elements or 
to filter based on their frequency.

Example:

python

Copy code

# Counting occurrences of even numbers in a list

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

count_even = sum(1 for n in numbers if n % 2 == 0)

print(count_even)  # Output: 5

Section 21.11: Changing Types in a List
Comprehensions can also be used to convert elements in a list to different 
types.

Example:

python

Copy code

# Converting strings to integers

strings = ["1", "2", "3", "4"]

integers = [int(s) for s in strings]

print(integers)  # Output: [1, 2, 3, 4]

Section 21.12: Nested List Comprehensions
List comprehensions can be nested within each other to handle more complex 
data transformations.

Example:

python

Copy code

# Nested list comprehension to extract characters from mult



HiringHustle Python Interview kit-1 105

iple words

words = ["apple", "banana", "cherry"]

letters = [letter for word in words for letter in word]

print(letters)  # Output: ['a', 'p', 'p', 'l', 'e', 'b', 

'a', 'n', 'a', 'n', 'a', 'c', 'h', 'e', 'r', 'r', 'y']

Section 21.13: Iterate Two or More Lists Simultaneously within 
List Comprehension
You can iterate over multiple lists at the same time in a list comprehension by 
using the zip()  function.

Example:

python

Copy code

# Iterating over two lists simultaneously

names = ["Alice", "Bob", "Charlie"]

scores = [85, 90, 88]

result = [(name, score) for name, score in zip(names, score

s)]

print(result)  # Output: [('Alice', 85), ('Bob', 90), ('Cha

rlie', 88)]

Chapter 22: List Slicing (Selecting Parts of Lists)
List slicing in Python is a powerful technique that allows you to extract a portion 
of a list by specifying a start, stop, and optional step value. It is performed 
using the slicing syntax:

python

Copy code

list[start:stop:step]



HiringHustle Python Interview kit-1 106

Section 22.1: Using the Third "Step" Argument
The step argument allows you to skip elements at a specified interval while 
slicing a list.

Syntax:

python

Copy code

list[start:stop:step]

Example:

python

Copy code

# Using the step argument to select every second element

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

step_slice = numbers[::2]

print(step_slice)  # Output: [0, 2, 4, 6, 8]

Using a negative step allows you to reverse the slicing direction.

Example:

python

Copy code

# Using a negative step to select elements in reverse order

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

reverse_step_slice = numbers[::-2]

print(reverse_step_slice)  # Output: [9, 7, 5, 3, 1]

Section 22.2: Selecting a Sublist from a List
You can use slicing to extract a sublist by specifying start and stop indices.

Example:



HiringHustle Python Interview kit-1 107

python

Copy code

# Selecting a sublist from index 2 to 5

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

sublist = numbers[2:6]  # Includes index 2, excludes index 

6

print(sublist)  # Output: [2, 3, 4, 5]

If you omit the start  or stop  index, slicing defaults to the beginning or the end 
of the list.

Example:

python

Copy code

# Slicing from the beginning to index 4

start_slice = numbers[:5]

print(start_slice)  # Output: [0, 1, 2, 3, 4]

# Slicing from index 5 to the end

end_slice = numbers[5:]

print(end_slice)  # Output: [5, 6, 7, 8, 9]

Section 22.3: Reversing a List with Slicing
A common use of slicing is to reverse a list using a step value of -1 .

Example:

python

Copy code

# Reversing a list using slicing

numbers = [0, 1, 2, 3, 4, 5]

reversed_list = numbers[::-1]



HiringHustle Python Interview kit-1 108

print(reversed_list)  # Output: [5, 4, 3, 2, 1, 0]

Reversing a list can be useful for iterating or manipulating data in reverse order.

Section 22.4: Shifting a List Using Slicing
Slicing can also be used to shift elements in a list by reordering them.

Example:

python

Copy code

# Shifting a list by moving the first three elements to the 

end

numbers = [0, 1, 2, 3, 4, 5, 6]

shifted_list = numbers[3:] + numbers[:3]

print(shifted_list)  # Output: [3, 4, 5, 6, 0, 1, 2]

This technique is particularly useful for creating rotated versions of lists.

Chapter 23: groupby()
The groupby()  function from the itertools  module allows developers to group 
elements of an iterable based on a specified key or property. This function 
creates an iterator that produces consecutive keys and groups from the input 
iterable.

Parameter Details
iterable : Any Python iterable (e.g., list, tuple).

key : A function or criteria based on which the grouping is performed.

Section 23.1: Example 4

Example 1: Using Tuples in the Iterable
Grouping items by their first element:



HiringHustle Python Interview kit-1 109

python

Copy code

from itertools import groupby

things = [

    ("animal", "bear"),

    ("animal", "duck"),

    ("plant", "cactus"),

    ("vehicle", "harley"),

    ("vehicle", "speed boat"),

    ("vehicle", "school bus")

]

dic = {}

f = lambda x: x[0]  # Group by the first element of each tu

ple

for key, group in groupby(sorted(things, key=f), f):

    dic[key] = list(group)

print(dic)

Results:

python

Copy code

{

    'animal': [('animal', 'bear'), ('animal', 'duck')],

    'plant': [('plant', 'cactus')],

    'vehicle': [('vehicle', 'harley'), ('vehicle', 'speed b

oat'), ('vehicle', 'school bus')]

}

Example 2: Using Lists in the Iterable
The behavior remains the same when the input contains lists instead of tuples.



HiringHustle Python Interview kit-1 110

python

Copy code

things = [

    ["animal", "bear"],

    ["animal", "duck"],

    ["vehicle", "harley"],

    ["plant", "cactus"],

    ["vehicle", "speed boat"],

    ["vehicle", "school bus"]

]

dic = {}

f = lambda x: x[0]

for key, group in groupby(sorted(things, key=f), f):

    dic[key] = list(group)

print(dic)

Results:

python

Copy code

{

    'animal': [['animal', 'bear'], ['animal', 'duck']],

    'plant': [['plant', 'cactus']],

    'vehicle': [['vehicle', 'harley'], ['vehicle', 'speed b

oat'], ['vehicle', 'school bus']]

}

Section 23.2: Example 2
When no key  is provided, the default behavior is grouping consecutive identical 
elements as keys.

Example:



HiringHustle Python Interview kit-1 111

python

Copy code

c = groupby(['goat', 'dog', 'cow', 1, 1, 2, 3, 11, 10, ('pe

rsons', 'man', 'woman')])

dic = {}

for k, v in c:

    dic[k] = list(v)

print(dic)

Results:

python

Copy code

{

    1: [1, 1],

    2: [2],

    3: [3],

    ('persons', 'man', 'woman'): [('persons', 'man', 'woma

n')],

    'cow': ['cow'],

    'dog': ['dog'],

    10: [10],

    11: [11],

    'goat': ['goat']

}

Section 23.3: Example 3
When the input data is not sorted, only the last occurrence of a key is 
considered.

Example: Without Sorting



HiringHustle Python Interview kit-1 112

python

Copy code

from itertools import groupby

list_things = [

    'goat', 'dog', 'donkey', 'mulato', 'cow', 'cat',

    ('persons', 'man', 'woman'), 'wombat', 'mongoose',

    'malloo', 'camel'

]

c = groupby(list_things, key=lambda x: x[0])

dic = {}

for k, v in c:

    dic[k] = list(v)

print(dic)

Results:

python

Copy code

{

    'c': ['camel'],

    'd': ['dog', 'donkey'],

    'g': ['goat'],

    'm': ['mongoose', 'malloo'],

    'persons': [('persons', 'man', 'woman')],

    'w': ['wombat']

}

Example: With Sorting
To include all elements under their respective keys, the input must be sorted 
first.



HiringHustle Python Interview kit-1 113

python

Copy code

sorted_list = sorted(list_things, key=lambda x: x[0])

print(sorted_list)  # ['cow', 'cat', 'camel', 'dog', 'donke

y', 'goat', ...]

c = groupby(sorted_list, key=lambda x: x[0])

dic = {}

for k, v in c:

    dic[k] = list(v)

print(dic)

Results:

python

Copy code

{

    'c': ['cow', 'cat', 'camel'],

    'd': ['dog', 'donkey'],

    'g': ['goat'],

    'm': ['mulato', 'mongoose', 'malloo'],

    'persons': [('persons', 'man', 'woman')]

}

Key Takeaways
1. Sorting Before Grouping: Always sort the iterable by the same key function 

used in groupby()  for consistent results.

2. Default Behavior: Without a specified key, consecutive identical elements 
are grouped together.

3. Versatile Usage: groupby()  works seamlessly with tuples, lists, and other 
iterables.



HiringHustle Python Interview kit-1 114

Chapter 24: Linked Lists
Linked lists are a fundamental data structure used to store data in a sequential 
manner. Unlike arrays, linked lists consist of nodes where each node contains:

1. Data.

2. A reference to the next node in the sequence.

Section 24.1: Single Linked List Example

Implementation of a Singly Linked List
Here’s an example of creating and manipulating a singly linked list in Python:

python

Copy code

class Node:

    """A class to represent a single node in a linked lis

t."""

    def __init__(self, data=None):

        self.data = data

        self.next = None

class LinkedList:

    """A class to represent a singly linked list."""

    def __init__(self):

        self.head = None

    def append(self, data):

        """Add a new node at the end of the linked list."""

        new_node = Node(data)

        if not self.head:

            self.head = new_node

            return

        current = self.head

        while current.next:

            current = current.next



HiringHustle Python Interview kit-1 115

        current.next = new_node

    def display(self):

        """Print all the elements in the linked list."""

        elements = []

        current = self.head

        while current:

            elements.append(current.data)

            current = current.next

        print(" -> ".join(map(str, elements)))

    def delete(self, key):

        """Delete the first occurrence of the key in the li

nked list."""

        current = self.head

        if current and current.data == key:

            self.head = current.next

            current = None

            return

        prev = None

        while current and current.data != key:

            prev = current

            current = current.next

        if current is None:

            return

        prev.next = current.next

        current = None

# Example Usage

linked_list = LinkedList()

linked_list.append(10)

linked_list.append(20)

linked_list.append(30)

linked_list.display()  # Output: 10 -> 20 -> 30

linked_list.delete(20)

linked_list.display()  # Output: 10 -> 30



HiringHustle Python Interview kit-1 116

Chapter 25: Linked List Node
Nodes are the building blocks of a linked list. Each node contains the data and 
a reference to the next node.

Section 25.1: Write a Simple Linked List Node in Python
Here’s how to define a basic linked list node:

python

Copy code

class Node:

    def __init__(self, data=None):

        """Initialize a node with data and a next pointe

r."""

        self.data = data

        self.next = None

# Example Usage

node1 = Node(5)

node2 = Node(10)

node1.next = node2  # Linking node1 to node2

print(node1.data)  # Output: 5

print(node1.next.data)  # Output: 10

Chapter 26: Filter
The filter()  function is a built-in function in Python used to filter elements 
from an iterable based on a specified condition.

Section 26.1: Basic Use of filter()

Example
Using filter()  with a lambda function:



HiringHustle Python Interview kit-1 117

python

Copy code

# Filter even numbers from a list

numbers = [1, 2, 3, 4, 5, 6]

even_numbers = list(filter(lambda x: x % 2 == 0, numbers))

print(even_numbers)  # Output: [2, 4, 6]

Section 26.2: Filter Without Function

Example
Filtering out None  or falsy values from a list:

python

Copy code

items = [0, 1, None, 2, '', 3, False]

filtered_items = list(filter(None, items))

print(filtered_items)  # Output: [1, 2, 3]

Section 26.3: Filter as Short-Circuit Check
Using filter()  to quickly evaluate conditions:

python

Copy code

# Check if any number in the list is divisible by 5

numbers = [1, 2, 3, 4, 5, 6, 10]

divisible_by_5 = list(filter(lambda x: x % 5 == 0, number

s))

print(divisible_by_5)  # Output: [5, 10]

Section 26.4: Complementary Function: filterfalse  and 
ifilterfalse



HiringHustle Python Interview kit-1 118

filterfalse  is a complementary function to filter()  from the itertools  module. 
It returns elements for which the condition is False .

Example

python

Copy code

from itertools import filterfalse

# Remove even numbers

numbers = [1, 2, 3, 4, 5, 6]

odd_numbers = list(filterfalse(lambda x: x % 2 == 0, number

s))

print(odd_numbers)  # Output: [1, 3, 5]

Chapter 27: Heapq
The heapq  module in Python provides an implementation of the heap queue 
algorithm, also known as the priority queue algorithm. This module is useful for 
finding the smallest or largest items in a collection efficiently.

Section 27.1: Largest and Smallest Items in a Collection

Example
Find the three largest and smallest items in a list:

python

Copy code

import heapq

# List of items

items = [1, 8, 3, 2, 7, 4, 10, 6]

# Find the 3 largest and smallest items

largest = heapq.nlargest(3, items)

smallest = heapq.nsmallest(3, items)



HiringHustle Python Interview kit-1 119

print("Largest items:", largest)  # Output: [10, 8, 7]

print("Smallest items:", smallest)  # Output: [1, 2, 3]

Section 27.2: Smallest Item in a Collection
Using heapq.heappop()  to retrieve the smallest item while maintaining the heap 
property:

python

Copy code

import heapq

# Create a list and heapify it

items = [6, 3, 8, 1, 4, 7]

heapq.heapify(items)

# Pop the smallest item

smallest = heapq.heappop(items)

print("Smallest item:", smallest)  # Output: 1

print("Remaining heap:", items)  # Output: [3, 4, 8, 6, 7]

Chapter 28: Tuple
Tuples are immutable sequences in Python, often used to store collections of 
related data.

Section 28.1: Tuple

Example
Creating a tuple with names:

python

Copy code

names = ("hiringhustle", "ManoharJoshi", "RishiKumar", "Mah

eshBabu")

print(names)  # Output: ('hiringhustle', 'ManoharJoshi', 'R



HiringHustle Python Interview kit-1 120

ishiKumar', 'MaheshBabu')

Section 28.2: Tuples Are Immutable
Tuples cannot be modified after creation:

python

Copy code

names = ("hiringhustle", "ManoharJoshi", "RishiKumar", "Mah

eshBabu")

try:

    names[0] = "NewName"  # Attempt to modify

except TypeError as e:

    print(e)  # Output: 'tuple' object does not support ite

m assignment

Section 28.3: Packing and Unpacking Tuples

Packing
Packing values into a tuple:

python

Copy code

packed = ("hiringhustle", "ManoharJoshi", "RishiKumar", "Ma

heshBabu")

print(packed)  # Output: ('hiringhustle', 'ManoharJoshi', 

'RishiKumar', 'MaheshBabu')

Unpacking
Unpacking values into variables:

python

Copy code



HiringHustle Python Interview kit-1 121

a, b, c, d = ("hiringhustle", "ManoharJoshi", "RishiKumar", 

"MaheshBabu")

print(a, b, c, d)  # Output: hiringhustle ManoharJoshi Rish

iKumar MaheshBabu

Section 28.4: Built-in Tuple Functions

Example
Using len()  and count() :

python

Copy code

names = ("hiringhustle", "ManoharJoshi", "RishiKumar", "Mah

eshBabu")

# Length of tuple

print(len(names))  # Output: 4

# Count occurrences of an element

print(names.count("hiringhustle"))  # Output: 1

Section 28.5: Tuples Are Element-wise Hashable and 
Equatable

Example
Comparing tuples:

python

Copy code

tuple1 = ("hiringhustle", "ManoharJoshi")

tuple2 = ("hiringhustle", "ManoharJoshi")

tuple3 = ("RishiKumar", "MaheshBabu")

print(tuple1 == tuple2)  # Output: True



HiringHustle Python Interview kit-1 122

print(tuple1 == tuple3)  # Output: False

Section 28.6: Indexing Tuples

Example
Accessing elements by index:

python

Copy code

names = ("hiringhustle", "ManoharJoshi", "RishiKumar", "Mah

eshBabu")

# Access first and last elements

print(names[0])  # Output: hiringhustle

print(names[-1])  # Output: MaheshBabu

Section 28.7: Reversing Elements

Example
Reversing a tuple:

python

Copy code

names = ("hiringhustle", "ManoharJoshi", "RishiKumar", "Mah

eshBabu")

# Reverse the tuple

reversed_names = names[::-1]

print(reversed_names)  # Output: ('MaheshBabu', 'RishiKuma

r', 'ManoharJoshi', 'hiringhustle')



HiringHustle Python Interview kit-1 123

Chapter 29: Basic Input and Output

Section 29.1: Using the print  Function
The print  function outputs data to the standard output.

Example

python

Copy code

print("Hello, World!")  # Output: Hello, World!

Section 29.2: Input from a File
Using open()  to read a file:

python

Copy code

with open("example.txt", "r") as file:

    for line in file:

        print(line.strip())  # Reads each line and removes 

trailing newline

Section 29.3: Read from stdin
Reading from standard input:

python

Copy code

import sys

for line in sys.stdin:

    print(line.strip())  # Process each line entered



HiringHustle Python Interview kit-1 124

Section 29.4: Using input()  and raw_input()
In Python 3, input()  reads user input as a string:

python

Copy code

name = input("Enter your name: ")

print(f"Hello, {name}!")  # Output: Hello, <name>!

Section 29.5: Function to Prompt User for a Number

Example

python

Copy code

def prompt_for_number():

    while True:

        try:

            number = int(input("Enter a number: "))

            return number

        except ValueError:

            print("That's not a valid number!")

num = prompt_for_number()

print(f"You entered: {num}")

Section 29.6: Printing a String Without a Newline at the End
Use end=''  in the print  function:

python

Copy code

print("Hello", end='')

print(" World!")  # Output: Hello World!



HiringHustle Python Interview kit-1 125

Chapter 30: Files & Folders I/O

Section 30.1: File Modes
Common modes:

'r' : Read

'w' : Write (overwrite if file exists)

'a' : Append

'b' : Binary mode

Example

python

Copy code

# Writing to a file

with open("example.txt", "w") as file:

    file.write("Hello, World!")

Section 30.2: Reading a File Line-by-Line

python

Copy code

with open("example.txt", "r") as file:

    for line in file:

        print(line.strip())

Section 30.3: Iterate Files (Recursively)
Using os  to iterate through directories:

python

Copy code

import os



HiringHustle Python Interview kit-1 126

for root, dirs, files in os.walk("."):

    for file in files:

        print(os.path.join(root, file))

Section 30.4: Getting the Full Contents of a File

python

Copy code

with open("example.txt", "r") as file:

    content = file.read()

print(content)

Section 30.5: Writing to a File

python

Copy code

with open("example.txt", "w") as file:

    file.write("New content!")

Section 30.6: Check Whether a File or Path Exists
Using os.path.exists :

python

Copy code

import os

if os.path.exists("example.txt"):

    print("File exists!")

else:

    print("File does not exist.")



HiringHustle Python Interview kit-1 127

Section 30.7: Random File Access Using mmap

python

Copy code

import mmap

with open("example.txt", "r+b") as file:

    mmapped_file = mmap.mmap(file.fileno(), 0)

    print(mmapped_file.readline().strip())

    mmapped_file.close()

Section 30.8: Replacing Text in a File

python

Copy code

with open("example.txt", "r") as file:

    content = file.read()

content = content.replace("old_text", "new_text")

with open("example.txt", "w") as file:

    file.write(content)

Section 30.9: Checking if a File is Empty

python

Copy code

import os

if os.stat("example.txt").st_size == 0:

    print("File is empty!")

else:

    print("File is not empty.")



HiringHustle Python Interview kit-1 128

Section 30.10: Read a File Between a Range of Lines

python

Copy code

with open("example.txt", "r") as file:

    lines = file.readlines()

    for line in lines[10:20]:  # Reading lines 10-20

        print(line.strip())

Section 30.11: Copy a Directory Tree
Using shutil.copytree :

python

Copy code

import shutil

shutil.copytree("source_folder", "destination_folder")

Section 30.12: Copying Contents of One File to Another

python

Copy code

with open("source.txt", "r") as src, open("destination.tx

t", "w") as dest:

    dest.write(src.read())

Chapter 31: os.path

Section 31.1: Join Paths



HiringHustle Python Interview kit-1 129

Use os.path.join()  to construct file paths in an OS-independent way.

Example

python

Copy code

import os

path = os.path.join("folder", "subfolder", "file.txt")

print(path)  # Output: folder/subfolder/file.txt (Windows u

ses backslashes)

Section 31.2: Path Component Manipulation
Using os.path.basename  and os.path.dirname :

python

Copy code

import os

path = "/folder/subfolder/file.txt"

print(os.path.basename(path))  # Output: file.txt

print(os.path.dirname(path))   # Output: /folder/subfolder

Section 31.3: Get the Parent Directory
Retrieve the parent directory using os.path.abspath  and os.path.dirname :

python

Copy code

import os

path = "/folder/subfolder/file.txt"

parent_dir = os.path.dirname(path)



HiringHustle Python Interview kit-1 130

print(parent_dir)  # Output: /folder/subfolder

Section 31.4: Check if the Given Path Exists
Using os.path.exists :

python

Copy code

import os

path = "example.txt"

if os.path.exists(path):

    print("Path exists.")

else:

    print("Path does not exist.")

Section 31.5: Check Path Type
Check if a path is a file, directory, or symbolic link:

python

Copy code

import os

path = "example.txt"

if os.path.isfile(path):

    print("It's a file.")

elif os.path.isdir(path):

    print("It's a directory.")

elif os.path.islink(path):

    print("It's a symbolic link.")

Section 31.6: Absolute Path from Relative Path
Convert a relative path to an absolute path:



HiringHustle Python Interview kit-1 131

python

Copy code

import os

relative_path = "./folder/file.txt"

absolute_path = os.path.abspath(relative_path)

print(absolute_path)  # Output: Full absolute path

Chapter 32: Iterables and Iterators

Section 32.1: Iterator vs Iterable vs Generator
Iterable: An object capable of returning its members one at a time (e.g., 
lists, strings).

Iterator: An object with a __next__()  method to fetch the next item.

Generator: A type of iterator created with a function and the yield  
keyword.

Example

python

Copy code

# Iterable

my_list = [1, 2, 3]

# Iterator

my_iter = iter(my_list)

print(next(my_iter))  # Output: 1

# Generator

def my_gen():

    yield 1

    yield 2

    yield 3

gen = my_gen()



HiringHustle Python Interview kit-1 132

print(next(gen))  # Output: 1

Section 32.2: Extract Values One by One

python

Copy code

my_list = [10, 20, 30]

my_iter = iter(my_list)

for value in my_iter:

    print(value)  # Output: 10, 20, 30

Section 32.3: Iterating Over Entire Iterable
Using for  to iterate over an iterable:

python

Copy code

my_list = [5, 10, 15]

for val in my_list:

    print(val)  # Output: 5, 10, 15

Section 32.4: Verify Only One Element in Iterable
Using any()  and all()  functions:

python

Copy code

numbers = [0, 1, 2]

# Check if any number is non-zero

print(any(numbers))  # Output: True

# Check if all numbers are non-zero



HiringHustle Python Interview kit-1 133

print(all(numbers))  # Output: False

Section 32.5: What Can Be Iterable
Examples of iterable objects:

python

Copy code

# Strings

for char in "abc":

    print(char)  # Output: a, b, c

# Tuples

for val in (1, 2, 3):

    print(val)  # Output: 1, 2, 3

Section 32.6: Iterator Isn't Reentrant!
An iterator can only be traversed once:

python

Copy code

numbers = iter([1, 2, 3])

print(list(numbers))  # Output: [1, 2, 3]

print(list(numbers))  # Output: []

Chapter 33: Functions

Section 33.1: Defining and Calling Simple Functions
Functions are reusable blocks of code that perform a specific task.

Example



HiringHustle Python Interview kit-1 134

python

Copy code

def greet(name):

    return f"Hello, {name}!"

print(greet("Alice"))  # Output: Hello, Alice!

Section 33.2: Defining a Function with an Arbitrary Number of 
Arguments
Use *args  to accept a variable number of positional arguments.

Example

python

Copy code

def sum_numbers(*args):

    return sum(args)

print(sum_numbers(1, 2, 3))  # Output: 6

print(sum_numbers(10, 20))   # Output: 30

Section 33.3: Lambda (Inline/Anonymous) Functions
Lambda functions are small, anonymous functions defined using the lambda  
keyword.

Example

python

Copy code

add = lambda x, y: x + y

print(add(5, 3))  # Output: 8

squared = list(map(lambda x: x**2, [1, 2, 3]))



HiringHustle Python Interview kit-1 135

print(squared)  # Output: [1, 4, 9]

Section 33.4: Defining a Function with Optional Arguments
Provide default values to arguments.

Example

python

Copy code

def greet(name, message="Welcome"):

    return f"{message}, {name}!"

print(greet("Alice"))             # Output: Welcome, Alice!

print(greet("Bob", "Hi there"))   # Output: Hi there, Bob!

Section 33.5: Defining a Function with Optional Mutable 
Arguments
Avoid mutable defaults to prevent unexpected behavior.

Example

python

Copy code

def append_to_list(value, lst=None):

    if lst is None:

        lst = []

    lst.append(value)

    return lst

print(append_to_list(1))  # Output: [1]

print(append_to_list(2))  # Output: [2]



HiringHustle Python Interview kit-1 136

Section 33.6: Argument Passing and Mutability
Mutable arguments (e.g., lists, dictionaries) can be modified inside functions.

Example

python

Copy code

def modify_list(lst):

    lst.append(4)

my_list = [1, 2, 3]

modify_list(my_list)

print(my_list)  # Output: [1, 2, 3, 4]

Section 33.7: Returning Values from Functions
Functions can return a value using the return  statement.

Example

python

Copy code

def square(num):

    return num * num

print(square(4))  # Output: 16

Section 33.8: Closure
Closures capture variables from their containing function's scope.

Example

python

Copy code

def multiplier(factor):



HiringHustle Python Interview kit-1 137

    def multiply(number):

        return number * factor

    return multiply

double = multiplier(2)

print(double(5))  # Output: 10

Section 33.9: Forcing the Use of Named Parameters
Place *  before parameters to enforce named arguments.

Example

python

Copy code

def greet(*, name, message):

    return f"{message}, {name}!"

print(greet(name="Alice", message="Hello"))  # Output: Hell

o, Alice!

Section 33.10: Nested Functions
Functions can be defined inside other functions.

Example

python

Copy code

def outer_function():

    def inner_function():

        return "Inner!"

    return inner_function()

print(outer_function())  # Output: Inner!



HiringHustle Python Interview kit-1 138

Chapter 35: Functional Programming in Python

Section 35.1: Lambda Function
Lambda functions are used for concise, single-expression functions.

Example

python

Copy code

squared = lambda x: x * x

print(squared(5))  # Output: 25

Section 35.2: Map Function
The map  function applies a function to all items in an input iterable.

Example

python

Copy code

nums = [1, 2, 3]

squared = list(map(lambda x: x**2, nums))

print(squared)  # Output: [1, 4, 9]

Section 35.3: Reduce Function
The reduce  function applies a rolling computation.

Example

python

Copy code

from functools import reduce

nums = [1, 2, 3, 4]



HiringHustle Python Interview kit-1 139

result = reduce(lambda x, y: x * y, nums)

print(result)  # Output: 24

Section 35.4: Filter Function
The filter  function filters elements based on a condition.

Example

python

Copy code

nums = [1, 2, 3, 4, 5]

even = list(filter(lambda x: x % 2 == 0, nums))

print(even)  # Output: [2, 4]

Chapter 37: Decorators

Section 37.1: Decorator Function
A decorator is a function that takes another function as input and returns a 
modified or enhanced version of that function.

Example

python

Copy code

def decorator(func):

    def wrapper():

        print("Before the function call.")

        func()

        print("After the function call.")

    return wrapper

@decorator

def say_hello():



HiringHustle Python Interview kit-1 140

    print("Hello!")

say_hello()

# Output:

# Before the function call.

# Hello!

# After the function call.

Section 37.2: Decorator Class
Decorators can also be implemented as classes using the __call__  method.

Example

python

Copy code

class Decorator:

    def __init__(self, func):

        self.func = func

    def __call__(self):

        print("Class-based decorator: Before the function c

all.")

        self.func()

        print("Class-based decorator: After the function ca

ll.")

@Decorator

def greet():

    print("Hello from a class-based decorator!")

greet()

# Output:

# Class-based decorator: Before the function call.

# Hello from a class-based decorator!

# Class-based decorator: After the function call.



HiringHustle Python Interview kit-1 141

Section 37.3: Decorator with Arguments (Decorator Factory)
A decorator factory allows passing arguments to a decorator.

Example

python

Copy code

def repeat(n):

    def decorator(func):

        def wrapper(*args, **kwargs):

            for _ in range(n):

                func(*args, **kwargs)

        return wrapper

    return decorator

@repeat(3)

def say_hi():

    print("Hi!")

say_hi()

# Output:

# Hi!

# Hi!

# Hi!

Section 37.4: Making a Decorator Look Like the Decorated 
Function
Use functools.wraps  to preserve the original function's metadata.

Example

python

Copy code

from functools import wraps



HiringHustle Python Interview kit-1 142

def decorator(func):

    @wraps(func)

    def wrapper(*args, **kwargs):

        print("Before the function call.")

        result = func(*args, **kwargs)

        print("After the function call.")

        return result

    return wrapper

@decorator

def add(a, b):

    return a + b

print(add(2, 3))  # Output: 5

print(add.__name__)  # Output: add

Section 37.5: Using a Decorator to Time a Function
Measure the execution time of a function with a decorator.

Example

python

Copy code

import time

def timing_decorator(func):

    @wraps(func)

    def wrapper(*args, **kwargs):

        start = time.time()

        result = func(*args, **kwargs)

        end = time.time()

        print(f"{func.__name__} executed in {end - start:.4

f} seconds.")

        return result

    return wrapper



HiringHustle Python Interview kit-1 143

@timing_decorator

def slow_function():

    time.sleep(2)

    print("Done!")

slow_function()

# Output:

# Done!

# slow_function executed in 2.0001 seconds.

Section 37.6: Create Singleton Class with a Decorator
Enforce a single instance of a class using a decorator.

Example

python

Copy code

def singleton(cls):

    instances = {}

    def get_instance(*args, **kwargs):

        if cls not in instances:

            instances[cls] = cls(*args, **kwargs)

        return instances[cls]

    return get_instance

@singleton

class SingletonClass:

    def __init__(self):

        print("Instance created.")

obj1 = SingletonClass()  # Output: Instance created.

obj2 = SingletonClass()

print(obj1 is obj2)  # Output: True



HiringHustle Python Interview kit-1 144

Chapter 38: Classes

Section 38.1: Introduction to Classes
A class is a blueprint for creating objects. Classes encapsulate data for the 
object and methods to manipulate that data.

Example

python

Copy code

class MyClass:

    def __init__(self, name):

        self.name = name

    def greet(self):

        print(f"Hello, {self.name}!")

# Create an instance

obj = MyClass("HiringHustle")

obj.greet()

# Output: Hello, HiringHustle!

Section 38.2: Bound, Unbound, and Static Methods
Bound Methods: Automatically pass the instance ( self ) as the first 
argument.

Unbound Methods: Require manual passing of the instance.

Static Methods: Do not require the instance or class as the first argument.

Example

python

Copy code



HiringHustle Python Interview kit-1 145

class Example:

    def bound_method(self):

        print("Bound method called.")

    @staticmethod

    def static_method():

        print("Static method called.")

# Bound method

obj = Example()

obj.bound_method()

# Static method

Example.static_method()

# Output:

# Bound method called.

# Static method called.

Section 38.3: Basic Inheritance
Inheritance allows a class (child) to inherit attributes and methods from another 
class (parent).

Example

python

Copy code

class Parent:

    def show(self):

        print("Parent class method.")

class Child(Parent):

    def display(self):

        print("Child class method.")

child = Child()

child.show()  # Inherited from Parent



HiringHustle Python Interview kit-1 146

child.display()

# Output:

# Parent class method.

# Child class method.

Section 38.4: Monkey Patching
Monkey patching is dynamically modifying a class or module at runtime.

Example

python

Copy code

class Sample:

    def method(self):

        print("Original method.")

# Monkey patch the method

def patched_method():

    print("Patched method.")

Sample.method = patched_method

obj = Sample()

obj.method()

# Output: Patched method.

Section 38.5: New-style vs. Old-style Classes
New-style classes inherit from object  (Python 3+), while old-style classes do 
not (Python 2).

Example (New-Style)

python

Copy code



HiringHustle Python Interview kit-1 147

class NewStyleClass(object):

    pass

Example (Old-Style)

python

Copy code

class OldStyleClass:

    pass

Section 38.6: Class Methods: Alternate Initializers
Class methods are defined using the @classmethod  decorator and can be used as 
alternate constructors.

Example

python

Copy code

class HiringHustle:

    def __init__(self, name):

        self.name = name

    @classmethod

    def from_name(cls, name):

        return cls(name)

obj = HiringHustle.from_name("MaheshBabu")

print(obj.name)

# Output: MaheshBabu

Section 38.7: Multiple Inheritance
Python supports multiple inheritance, where a class can inherit from multiple 
parent classes.



HiringHustle Python Interview kit-1 148

Example

python

Copy code

class Parent1:

    def greet(self):

        print("Hello from Parent1.")

class Parent2:

    def greet(self):

        print("Hello from Parent2.")

class Child(Parent1, Parent2):

    pass

obj = Child()

obj.greet()  # Follows method resolution order (MRO)

# Output: Hello from Parent1.

Section 38.8: Properties
Properties allow class attributes to have getters, setters, and deleters, 
providing controlled access to private variables.

Using @property  Decorator
The @property  decorator turns a method into a "getter." Additional decorators, 
@<property_name>.setter  and @<property_name>.deleter , are used for setting and 
deleting.

Example: Property with Getter, Setter, and Deleter

python

Copy code

class HiringHustle:

    def __init__(self, name):

        self._name = name  # Private variable



HiringHustle Python Interview kit-1 149

    @property

    def name(self):

        print("Getting name...")

        return self._name

    @name.setter

    def name(self, value):

        print("Setting name...")

        self._name = value

    @name.deleter

    def name(self):

        print("Deleting name...")

        del self._name

# Create instance

obj = HiringHustle("RishiKumar")

# Access property

print(obj.name)  # Getter

# Modify property

obj.name = "MaheshBabu"  # Setter

print(obj.name)

# Delete property

del obj.name

# Output:

# Getting name...

# RishiKumar

# Setting name...

# Getting name...

# MaheshBabu

# Deleting name...



HiringHustle Python Interview kit-1 150

Why Use Properties?
1. Encapsulation: Control access to instance variables.

2. Validation: Add logic when setting or getting values.

3. Readability: Access like an attribute instead of a method.

Section 38.10: Class and Instance Variables
Class variables are shared across all instances of a class, while instance 
variables are unique to each instance.

Class Variables
Defined directly in the class body and shared by all instances.

Instance Variables
Defined inside methods (like __init__ ) and are specific to each instance.

Example

python

Copy code

class HiringHustle:

    company_name = "HiringHustle"  # Class variable

    def __init__(self, employee_name):

        self.employee_name = employee_name  # Instance vari

able

# Access class variable

print(HiringHustle.company_name)  # HiringHustle

# Create instance

emp1 = HiringHustle("MaheshBabu")

emp2 = HiringHustle("RishiKumar")

# Access instance variables

print(emp1.employee_name)  # MaheshBabu

print(emp2.employee_name)  # RishiKumar



HiringHustle Python Interview kit-1 151

# Modify class variable

HiringHustle.company_name = "HH Tech"

print(emp1.company_name)  # HH Tech

print(emp2.company_name)  # HH Tech

Section 38.11: Class Composition
Class Composition is a design principle where a class is composed of objects 
from other classes. Instead of using inheritance (which models "is-a" 
relationships), composition models "has-a" relationships. This approach allows 
objects to be more flexible and modular, as a class can combine behaviors from 
multiple components without directly inheriting from them.

Why Use Composition?
Reusability: You can reuse the components (objects of other classes) in 
multiple classes.

Flexibility: Composition allows you to change or extend the behavior of 
objects at runtime.

Decoupling: Each component class is independent and can be changed or 
updated without affecting other parts of the program.

Example of Class Composition
In this example, the Car  class has components Engine  and Wheel  rather than 
inheriting from them.

python

Copy code

class Engine:

    def __init__(self, engine_type):

        self.engine_type = engine_type

    def start(self):

        print(f"{self.engine_type} engine started.")

class Wheel:



HiringHustle Python Interview kit-1 152

    def __init__(self, wheel_type):

        self.wheel_type = wheel_type

    def rotate(self):

        print(f"{self.wheel_type} wheel is rotating.")

class Car:

    def __init__(self, engine_type, wheel_type):

        self.engine = Engine(engine_type)  # Composed of an 

Engine

        self.wheel = Wheel(wheel_type)     # Composed of a 

Wheel

    def drive(self):

        self.engine.start()

        self.wheel.rotate()

# Create a Car object with its own engine and wheels

my_car = Car("V8", "Alloy")

my_car.drive()

Output:

csharp

Copy code

V8 engine started.

Alloy wheel is rotating.

Key Points of Composition
1. Behavior Combination: A class can combine different behaviors (from 

different objects).

2. Encapsulation: The composed classes are encapsulated inside the main 
class and do not expose internal details.

3. Loose Coupling: Changes in a composed class (e.g., Wheel ) don't directly 
affect the main class ( Car ), making it easier to maintain and extend.



HiringHustle Python Interview kit-1 153

Comparing Composition vs. Inheritance
Inheritance: Represents a relationship where one class is a specialized 
version of another class.

Composition: Represents a relationship where one class is made up of one 
or more other classes (objects).

Section 38.12: Listing All Class Members
In Python, you can list all members (attributes, methods, and other objects) of a 
class using built-in functions like dir() , vars() , or __dict__ . These provide 
insights into what attributes and methods a class or object has, which can be 
useful for introspection, debugging, or dynamically working with objects.

Using dir()
The dir()  function returns a list of all attributes and methods of an object or 
class, including built-in ones (those that are part of the class or its inheritance 
chain).

Example:

python

Copy code

class Dog:

    species = 'Canis familiaris'

    def __init__(self, name):

        self.name = name

    def bark(self):

        return f"{self.name} says woof!"

# List all members of the Dog class

print(dir(Dog))

Output:



HiringHustle Python Interview kit-1 154

css

Copy code

['__doc__', '__module__', 'bark', 'name', 'species', '__dic

t__', '__weakref__']

Here, the dir()  function lists all attributes and methods in the Dog  class, 
including the special methods (like __doc__  and __module__ ), instance variables 
( name ), and class variables ( species ).

Using vars()
The vars()  function returns the __dict__  attribute of an object, which is a 
dictionary that contains the instance variables (but does not list the methods or 
inherited attributes).

Example:

python

Copy code

class Dog:

    def __init__(self, name):

        self.name = name

        self.age = 3

dog = Dog("Buddy")

print(vars(dog))

Output:

arduino

Copy code

{'name': 'Buddy', 'age': 3}

In this example, vars(dog)  returns the instance variables of dog , which are name  
and age .



HiringHustle Python Interview kit-1 155

Using __dict__
The __dict__  attribute of a class or instance is a dictionary containing all of its 
attributes. It can be used directly to access both instance variables and class 
variables.

Example:

python

Copy code

class Dog:

    species = 'Canis familiaris'

    def __init__(self, name):

        self.name = name

dog = Dog("Buddy")

print(dog.__dict__)

Output:

arduino

Copy code

{'name': 'Buddy'}

In this case, dog.__dict__  only shows the instance variables ( name ), excluding 
class variables like species .

Summary of Methods to List Class Members
dir() : Lists all attributes and methods of an object or class, including built-
in ones.

vars() : Returns the __dict__  of an object, which contains instance 
variables.

__dict__ : Direct access to the dictionary of instance or class variables.

Section 38.13: Singleton Class



HiringHustle Python Interview kit-1 156

A Singleton is a design pattern that ensures a class has only one instance and 
provides a global point of access to that instance. This pattern is often used 
when only one object is needed to coordinate actions, such as managing a 
connection pool, configuration settings, or logging.

How to Implement a Singleton
A common way to implement a Singleton in Python is by overriding the __new__  
method, which controls the object creation process. You can check if an 
instance already exists and return it if so.

Example:

python

Copy code

class Singleton:

    _instance = None

    def __new__(cls):

        if cls._instance is None:

            cls._instance = super(Singleton, cls).__new__(c

ls)

        return cls._instance

# Create two instances

s1 = Singleton()

s2 = Singleton()

# Check if both are the same instance

print(s1 is s2)  # True

Output:

graphql

Copy code

True



HiringHustle Python Interview kit-1 157

In this example, s1  and s2  are the same instance, demonstrating that only one 
instance of Singleton  is created.

Explanation:
The __new__  method is responsible for creating a new instance of the class.

The _instance  class variable is used to store the single instance of the class.

If an instance already exists, it returns that instance instead of creating a 
new one.

Section 38.14: Descriptors and Dotted Lookups
A descriptor is an object that defines how attributes are accessed or modified 
in another object. It is a powerful feature in Python that allows custom behavior 
for attribute access, assignment, and deletion.

Descriptors are implemented by creating a class that defines one or more of 
the following methods:

__get__(self, instance, owner) : Called to retrieve an attribute's value.

__set__(self, instance, value) : Called to set an attribute's value.

__delete__(self, instance) : Called to delete an attribute.

Descriptors are used in the implementation of Python's built-in features like 
properties, methods, and class variables.

Example of a Simple Descriptor

python

Copy code

class MyDescriptor:

    def __get__(self, instance, owner):

        return "Accessing the attribute"

    def __set__(self, instance, value):

        print(f"Setting the attribute to {value}")

class MyClass:

    my_attr = MyDescriptor()



HiringHustle Python Interview kit-1 158

# Create an instance of MyClass

obj = MyClass()

# Access the attribute

print(obj.my_attr)  # Calls MyDescriptor.__get__

# Set the attribute

obj.my_attr = 42  # Calls MyDescriptor.__set__

Output:

css

Copy code

Accessing the attribute

Setting the attribute to 42

In this example:

The MyDescriptor  class implements the descriptor protocol with the __get__  
and __set__  methods.

When the my_attr  attribute is accessed or modified, the corresponding 
method in MyDescriptor  is invoked.

Dotted Lookups
Dotted lookups allow access to attributes in an object using the dot notation 
(e.g., obj.attribute ). When Python performs a dotted lookup, it first checks if 
the attribute exists in the object's __dict__ . If it doesn't, it checks the class's 
__dict__ , and if necessary, proceeds to base classes. If a descriptor is present, 
the descriptor's __get__  or __set__  methods are called.

Chapter 39: Metaclasses
Metaclasses are a powerful and advanced feature in Python that allows you to 
control the creation of classes. In Python, classes themselves are instances of 
metaclasses. Essentially, a metaclass is a class for classes—it's the "blueprint" 
for creating classes, just like classes are blueprints for creating objects.



HiringHustle Python Interview kit-1 159

What is a Metaclass?
A metaclass in Python is a class that defines the behavior of other classes. 
When you define a class, Python uses a metaclass to create the class itself. By 
default, the metaclass for all classes in Python is type , but you can customize 
this behavior by defining your own metaclasses.

Section 39.1: Basic Metaclasses
In this section, we will look at the basics of how to define and use metaclasses.

Creating a Metaclass
A metaclass is defined by subclassing type . The metaclass can be used to 
customize class creation, attribute management, and other behaviors. To use a 
custom metaclass, you assign it to the metaclass  attribute of a class.

Example:

python

Copy code

# Defining a metaclass

class MyMeta(type):

    def __new__(cls, name, bases, dct):

        print(f"Creating class {name} with metaclass {cls._

_name__}")

        return super().__new__(cls, name, bases, dct)

# Creating a class using the metaclass

class MyClass(metaclass=MyMeta):

    pass

# Output:

# Creating class MyClass with metaclass MyMeta

In this example:

MyMeta  is a metaclass that inherits from type .

The __new__  method in MyMeta  is overridden to control the creation of the 
class.



HiringHustle Python Interview kit-1 160

MyClass  uses MyMeta  as its metaclass, so when MyClass  is created, the 
__new__  method of MyMeta  is called.

Section 39.2: Singletons using Metaclasses
One common use case for metaclasses is implementing the Singleton pattern, 
which ensures that a class has only one instance.

Singleton with Metaclasses
Here’s how you can implement the Singleton pattern using a metaclass:

Example:

python

Copy code

class SingletonMeta(type):

    _instances = {}

    def __call__(cls, *args, **kwargs):

        if cls not in cls._instances:

            # Create the instance only if it doesn't alread

y exist

            instance = super().__call__(*args, **kwargs)

            cls._instances[cls] = instance

        return cls._instances[cls]

# Using the Singleton metaclass

class SingletonClass(metaclass=SingletonMeta):

    pass

# Create two instances of SingletonClass

instance1 = SingletonClass()

instance2 = SingletonClass()

# Check if both instances are the same

print(instance1 is instance2)  # True

Output:



HiringHustle Python Interview kit-1 161

graphql

Copy code

True

In this example:

SingletonMeta  is a metaclass that ensures only one instance of a class is 
created by checking if the class already has an instance.

When a new instance of SingletonClass  is created, the metaclass controls 
the instantiation, ensuring that only one instance is returned.

Section 39.3: Using a Metaclass
In this section, we explore how to use a metaclass to modify class behaviors, 
including validation, customization, and adding new attributes or methods to a 
class.

Example: Adding Methods to Classes with Metaclasses

python

Copy code

class AddMethodMeta(type):

    def __new__(cls, name, bases, dct):

        # Add a new method to the class

        def new_method(self):

            return f"{self.__class__.__name__} method added 

by metaclass"

        dct['new_method'] = new_method

        return super().__new__(cls, name, bases, dct)

# Create a class using the metaclass

class MyClass(metaclass=AddMethodMeta):

    pass

# Creating an instance of MyClass

obj = MyClass()



HiringHustle Python Interview kit-1 162

# Calling the method added by the metaclass

print(obj.new_method())  # Output: MyClass method added by 

metaclass

In this example:

AddMethodMeta  is a metaclass that dynamically adds a method new_method  to 
the class it creates.

The new_method  is added to MyClass  when it is created, and it is available to 
any instances of the class.

Section 39.4: Introduction to Metaclasses
Metaclasses provide a way to control how classes are created and how they 
behave. This section introduces metaclasses in general, explaining how 
Python’s class system works and how you can customize class creation by 
using metaclasses.

When to Use Metaclasses
Metaclasses are generally used in advanced scenarios, such as:

Creating Singleton classes.

Validating class definitions or enforcing coding standards.

Adding methods or attributes dynamically to classes.

Implementing domain-specific languages (DSLs) or other design patterns.

Section 39.5: Custom Functionality with Metaclasses
In this section, we explore how to implement custom functionality using 
metaclasses, such as validating class attributes or modifying their behavior 
when they are defined.

Example: Validating Class Attributes with Metaclasses

python

Copy code

class AttributeValidatorMeta(type):



HiringHustle Python Interview kit-1 163

    def __new__(cls, name, bases, dct):

        # Ensure the class has a 'name' attribute

        if 'name' not in dct:

            raise TypeError("Class must have a 'name' attri

bute")

        return super().__new__(cls, name, bases, dct)

# Valid class

class ValidClass(metaclass=AttributeValidatorMeta):

    name = "Valid"

# Invalid class (raises TypeError)

try:

    class InvalidClass(metaclass=AttributeValidatorMeta):

        pass

except TypeError as e:

    print(e)  # Output: Class must have a 'name' attribute

Explanation:

The AttributeValidatorMeta  metaclass checks if a class being created has a 
name  attribute.

If the name  attribute is missing, it raises a TypeError .

Section 39.6: The Default Metaclass
In Python, the default metaclass for all classes is type . The type  metaclass is 
responsible for the creation of new classes. It is possible to use type  directly as 
a metaclass or subclass it to create custom metaclasses.

Using type  as a Metaclass

python

Copy code

# Using 'type' as the metaclass directly

class MyClass(metaclass=type):

    pass



HiringHustle Python Interview kit-1 164

# Checking the type of MyClass

print(type(MyClass))  # <class 'type'>

In this example, type  is explicitly used as the metaclass, and it behaves as 
expected.

Chapter 40: String Formatting
String formatting in Python allows you to create formatted strings by 
embedding expressions or variables inside the string. It provides a clean way to 
construct strings, especially when dealing with variables and complex 
expressions.

Section 40.1: Basics of String Formatting
In Python, there are multiple ways to format strings, and the most common 
methods are:

1. Using %  operator (older style, now less common):

This method uses placeholders in a string and the values to be inserted 
are provided in a tuple.

python

Copy code

name = "ManoharJoshi"

age = 25

formatted_string = "Name: %s, Age: %d" % (name, age)

print(formatted_string)

Output:

yaml

Copy code



HiringHustle Python Interview kit-1 165

Name: ManoharJoshi, Age: 25

2. Using .format()  method (introduced in Python 2.7):

This method is more flexible and allows you to insert values into 
placeholders {} .

python

Copy code

name = "ManoharJoshi"

age = 25

formatted_string = "Name: {}, Age: {}".format(name, age)

print(formatted_string)

Output:

yaml

Copy code

Name: ManoharJoshi, Age: 25

3. Using f-strings (formatted string literals) (introduced in Python 3.6):

This method is the most modern and convenient way, where variables 
are directly embedded within the string.

python

Copy code

name = "ManoharJoshi"

age = 25

formatted_string = f"Name: {name}, Age: {age}"

print(formatted_string)

Output:



HiringHustle Python Interview kit-1 166

yaml

Copy code

Name: ManoharJoshi, Age: 25

Section 40.2: Alignment and Padding
You can use string formatting to align text and pad it with spaces or other 
characters.

Example of Padding and Alignment:

python

Copy code

# Left-align with padding

print(f"{'HiringHustle':<20}")  # Left-aligned, padded with 

spaces

# Right-align with padding

print(f"{'HiringHustle':>20}")  # Right-aligned, padded wit

h spaces

# Center-align with padding

print(f"{'HiringHustle':^20}")  # Center-aligned, padded wi

th spaces

Output:

markdown

Copy code

HiringHustle

         HiringHustle

   HiringHustle

Using Custom Padding Character:



HiringHustle Python Interview kit-1 167

python

Copy code

# Padding with a different character

print(f"{'HiringHustle':*^20}")  # Center-aligned, padded w

ith asterisks

Output:

markdown

Copy code

****HiringHustle****

Section 40.3: Format Literals (f-string)
F-strings (formatted string literals) are a powerful feature for formatting strings 
in Python 3.6 and later. They allow you to embed expressions inside string 
literals using curly braces {}  and prefix the string with f .

Example:

python

Copy code

name = "RishiKumar"

age = 30

formatted_string = f"Name: {name}, Age: {age}"

print(formatted_string)

Output:

yaml

Copy code

Name: RishiKumar, Age: 30

F-strings can also evaluate expressions inside the curly braces:



HiringHustle Python Interview kit-1 168

python

Copy code

x = 5

formatted_string = f"The square of {x} is {x**2}"

print(formatted_string)

Output:

csharp

Copy code

The square of 5 is 25

Section 40.4: Float Formatting
Python allows you to format floating-point numbers in specific ways, such as 
limiting the number of decimal places or using scientific notation.

Example of Float Formatting:

python

Copy code

pi = 3.141592653589793

print(f"{pi:.2f}")  # Round to 2 decimal places

print(f"{pi:.3e}")  # Scientific notation with 3 decimals

Output:

Copy code

3.14

3.142e+00

In this case, .2f  formats the floating-point number to 2 decimal places, and 
.3e  formats the number in scientific notation with 3 decimals.



HiringHustle Python Interview kit-1 169

Section 40.5: Named Placeholders
Instead of relying on positional arguments in the .format()  method or f-strings, 
you can use named placeholders to make the format clearer.

Example:

python

Copy code

formatted_string = "Name: {name}, Age: {age}".format(name

="ManoharJoshi", age=25)

print(formatted_string)

Output:

yaml

Copy code

Name: ManoharJoshi, Age: 25

This method is especially useful when you have many variables to insert into 
the string.

Section 40.6: String Formatting with Datetime
Python provides a rich set of formatting options for date and time, which can be 
accessed through the strftime  method.

Example with datetime:

python

Copy code

from datetime import datetime

current_time = datetime.now()

formatted_time = current_time.strftime("Today is %B %d, %Y 

and the time is %H:%M:%S")



HiringHustle Python Interview kit-1 170

print(formatted_time)

Output:

csharp

Copy code

Today is December 29, 2024 and the time is 14:45:30

You can format the date and time with different codes:

%B  for the full month name.

%d  for the day of the month.

%Y  for the year.

%H  for the hour (24-hour clock).

%M  for the minute.

%S  for the second.

Section 40.7: Formatting Numerical Values
You can format large numbers with commas or in fixed-width forms, or even 
show the number in hexadecimal, binary, or octal forms.

Example:

python

Copy code

large_number = 1000000

print(f"{large_number:,}")  # Adds commas to large numbers

Output:

Copy code

1,000,000



HiringHustle Python Interview kit-1 171

You can also format numbers in binary, octal, or hexadecimal:

python

Copy code

number = 255

print(f"{number:b}")  # Binary

print(f"{number:o}")  # Octal

print(f"{number:x}")  # Hexadecimal

Output:

Copy code

11111111

377

ff

Section 40.8: Nested Formatting
You can nest formatting expressions inside f-strings for more complex 
formatting.

Example:

python

Copy code

value = 5

formatted_string = f"The value is {'{0:>5}'.format(value)}"

print(formatted_string)

Output:

csharp

Copy code

The value is     5



HiringHustle Python Interview kit-1 172

Section 40.9: Format using getitem  and getattr
You can use getitem  and getattr  to format attributes or elements of an object 
dynamically.

Example:

python

Copy code

class Person:

    def __init__(self, name, age):

        self.name = name

        self.age = age

p = Person("ManoharJoshi", 25)

formatted_string = f"Name: {p['name']}, Age: {p['age']}"

print(formatted_string)

This example uses getitem  and getattr  to access the attributes dynamically for 
formatting.

Section 40.10: Padding and Truncating Strings, Combined
You can combine padding and truncating to control how strings are displayed.

Example:

python

Copy code

# Truncating a string and padding it

long_string = "This is a very long string"

formatted_string = f"{long_string:.10}..."

print(formatted_string)

Output:



HiringHustle Python Interview kit-1 173

csharp

Copy code

This is a ...

In this example, .10  truncates the string to 10 characters, and ...  is added as 
the suffix.

Section 40.11: Custom Formatting for a Class
You can define custom formatting behavior for a class by overriding the 
__format__  method. This allows you to customize how instances of a class are 
formatted using the format()  function or f-strings.

Example:

python

Copy code

class Person:

    def __init__(self, name, age):

        self.name = name

        self.age = age

    def __format__(self, format_spec):

        return f"Name: {self.name}, Age: {self.age}"

p = Person("RishiKumar", 30)

formatted_string = f"{p}"

print(formatted_string)

Output:

yaml

Copy code

Name: RishiKumar, Age: 30



HiringHustle Python Interview kit-1 174

Chapter 41: String Methods
Python provides a wealth of built-in methods that allow you to manipulate and 
work with strings efficiently. These methods help with common tasks such as 
altering string capitalization, replacing substrings, splitting strings, and more.

Section 41.1: Changing the Capitalization of a String
You can change the capitalization of a string using various methods:

upper() : Converts all characters to uppercase.

lower() : Converts all characters to lowercase.

capitalize() : Capitalizes the first letter of the string.

title() : Capitalizes the first letter of each word.

swapcase() : Swaps case for all characters.

Examples:

python

Copy code

text = "HiringHustle"

print(text.upper())         # "HIRINGHUSTLE"

print(text.lower())         # "hiringhustle"

print(text.capitalize())     # "Hiringhustle"

print(text.title())         # "Hiringhustle"

print(text.swapcase())      # "hIRINGhUSTLE"

Section 41.2: str.translate : Translating Characters in a String
The str.translate()  method allows you to map each character in a string to 
another character using a translation table.

Example:



HiringHustle Python Interview kit-1 175

python

Copy code

# Create a translation table

trans_table = str.maketrans('Hh', 'Xx')

text = "HiringHustle"

translated_text = text.translate(trans_table)

print(translated_text)  # "XiringXustle"

In this example, all occurrences of 'H' are replaced with 'X', and 'h' with 'x'.

Section 41.3: str.format  and f-strings: Format Values into a 
String
Both .format()  and f-strings allow you to insert variables into a string, making 
the string more readable and dynamic.

Example using str.format :

python

Copy code

name = "ManoharJoshi"

age = 30

formatted_string = "Name: {}, Age: {}".format(name, age)

print(formatted_string)

Example using f-strings:

python

Copy code

formatted_string = f"Name: {name}, Age: {age}"

print(formatted_string)

Both methods will output:



HiringHustle Python Interview kit-1 176

yaml

Copy code

Name: ManoharJoshi, Age: 30

Section 41.4: String Module's Useful Constants
The string  module provides constants like string.ascii_letters , string.digits , 
and others to easily work with strings.

Example:

python

Copy code

import string

print(string.ascii_letters)   # 'abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ'

print(string.digits)          # '0123456789'

print(string.punctuation)     # '!"#$%&\'()*+,-./:;<=>?@

[\\]^_`{|}~'

Section 41.5: Stripping Unwanted Leading/Trailing Characters 
from a String
The strip() , lstrip() , and rstrip()  methods are used to remove unwanted 
characters (by default whitespace) from the beginning and/or end of a string.

Examples:

python

Copy code

text = "  HiringHustle  "

print(text.strip())   # "HiringHustle"

print(text.lstrip())  # "HiringHustle  "



HiringHustle Python Interview kit-1 177

print(text.rstrip())  # "  HiringHustle"

You can also specify which characters to remove:

python

Copy code

text = "xxHiringHustlexx"

print(text.strip('x'))  # "HiringHustle"

Section 41.6: Reversing a String
To reverse a string, you can use slicing with a step of -1 .

Example:

python

Copy code

text = "HiringHustle"

reversed_text = text[::-1]

print(reversed_text)  # "elt suHgniriH"

Section 41.7: Split a String Based on a Delimiter into a List of 
Strings
The split()  method splits a string into a list based on a delimiter (by default, 
whitespace).

Example:

python

Copy code

text = "HiringHustle ManoharJoshi RishiKumar"

split_text = text.split()

print(split_text)  # ['HiringHustle', 'ManoharJoshi', 'Rish



HiringHustle Python Interview kit-1 178

iKumar']

You can also specify a delimiter:

python

Copy code

text = "apple,banana,orange"

split_text = text.split(',')

print(split_text)  # ['apple', 'banana', 'orange']

Section 41.8: Replace All Occurrences of One Substring with 
Another Substring
The replace()  method allows you to replace all occurrences of a substring with 
another substring.

Example:

python

Copy code

text = "HiringHustle is great"

new_text = text.replace("HiringHustle", "JobHunt")

print(new_text)  # "JobHunt is great"

Section 41.9: Testing What a String is Composed Of
You can test whether a string is composed of certain types of characters using 
methods like isalpha() , isdigit() , and isspace() .

Examples:

python

Copy code

text = "HiringHustle"

print(text.isalpha())   # True, all characters are letters



HiringHustle Python Interview kit-1 179

number = "12345"

print(number.isdigit()) # True, all characters are digits

whitespace = "   "

print(whitespace.isspace())  # True, all characters are spa

ces

Section 41.10: String Contains
You can check if a string contains a certain substring using the in  keyword.

Example:

python

Copy code

text = "HiringHustle"

print("Hustle" in text)  # True

print("Job" in text)     # False

Section 41.11: Join a List of Strings into One String
The join()  method allows you to join a list of strings into a single string with a 
specified separator.

Example:

python

Copy code

words = ["HiringHustle", "ManoharJoshi", "RishiKumar"]

joined_text = " ".join(words)

print(joined_text)  # "HiringHustle ManoharJoshi RishiKuma

r"

You can use any separator, like commas or dashes:



HiringHustle Python Interview kit-1 180

python

Copy code

joined_text = ", ".join(words)

print(joined_text)  # "HiringHustle, ManoharJoshi, RishiKum

ar"

Section 41.12: Counting Number of Times a Substring Appears 
in a String
The count()  method counts how many times a substring appears in a string.

Example:

python

Copy code

text = "HiringHustle, HiringHustle, HiringHustle"

print(text.count("HiringHustle"))  # 3

Section 41.13: Case Insensitive String Comparisons
You can compare strings case-insensitively using lower()  or upper()  to 
normalize the case before comparison.

Example:

python

Copy code

text1 = "HiringHustle"

text2 = "hiringhustle"

print(text1.lower() == text2.lower())  # True

Section 41.14: Justify Strings



HiringHustle Python Interview kit-1 181

The ljust() , rjust() , and center()  methods are used to pad strings and align 
them.

Examples:

python

Copy code

text = "HiringHustle"

print(text.ljust(20, '-'))  # "HiringHustle------"

print(text.rjust(20, '-'))  # "------HiringHustle"

print(text.center(20, '-')) # "--HiringHustle---"

Section 41.15: Test the Starting and Ending Characters of a 
String
The startswith()  and endswith()  methods allow you to test whether a string 
starts or ends with a specific substring.

Examples:

python

Copy code

text = "HiringHustle"

print(text.startswith("Hiring"))  # True

print(text.endswith("Hustle"))    # True

Section 41.16: Conversion Between str  or bytes  Data and 
Unicode Characters
You can encode a string into bytes and decode it back to a string using the 
encode()  and decode()  methods.

Example:

python

Copy code



HiringHustle Python Interview kit-1 182

text = "HiringHustle"

encoded_text = text.encode('utf-8')  # Converts to bytes

decoded_text = encoded_text.decode('utf-8')  # Converts bac

k to string

print(encoded_text)  # b'HiringHustle'

print(decoded_text)  # HiringHustle

Chapter 42: Using Loops within Functions
Loops are powerful tools when incorporated within functions, enabling 
repetitive operations without duplicating code. This chapter covers how to use 
loops in combination with functions.

Section 42.1: Return Statement Inside a Loop in a Function
Using a return  statement inside a loop allows you to exit the function as soon 
as a certain condition is met, which is helpful when you want to terminate 
execution early and return a result based on a condition.

Example:

python

Copy code

def find_first_even(numbers):

    for number in numbers:

        if number % 2 == 0:

            return number  # Returns the first even number

    return None  # Returns None if no even number is found

numbers = [1, 3, 7, 8, 11]

result = find_first_even(numbers)

print(result)  # 8



HiringHustle Python Interview kit-1 183

In this example, the function returns the first even number it finds and exits the 
loop early.

If no even number is found, the function returns None .

Chapter 43: Importing Modules
In Python, modules are an essential part of writing reusable and modular code. 
This chapter discusses the various ways to import modules and the rules 
governing imports.

Section 43.1: Importing a Module
The import  statement allows you to bring external Python files (modules) into 
your program. There are several ways to import modules depending on the 
desired functionality.

Example:

python

Copy code

import math  # Import the entire math module

print(math.sqrt(16))  # Output: 4.0

You can also give the module a shorter alias using as :

python

Copy code

import math as m

print(m.sqrt(16))  # Output: 4.0

Section 43.2: The __all__  Special Variable
The __all__  variable in a module controls what is imported when from module 
import *  is used. If __all__  is not defined, all top-level names are imported by 
default.

Example:



HiringHustle Python Interview kit-1 184

python

Copy code

# In a module (e.g., mymodule.py)

__all__ = ['function_a', 'function_b']

def function_a():

    pass

def function_b():

    pass

def function_c():  # Not imported by default

    pass

Now, when you import everything from the module, only function_a  and 
function_b  are imported:

python

Copy code

from mymodule import *

Section 43.3: Import Modules from an Arbitrary Filesystem 
Location
Sometimes, you need to import modules that aren't in the default Python 
search path. You can use sys.path  to add directories to the module search path.

Example:

python

Copy code

import sys

sys.path.append('/path/to/your/module')

import yourmodule  # Now you can import the module from the 



HiringHustle Python Interview kit-1 185

custom path

Section 43.4: Importing All Names from a Module
The from module import *  syntax allows you to import all public names from a 
module. However, it is not recommended because it can lead to namespace 
pollution.

Example:

python

Copy code

from math import *

print(sqrt(16))  # No need to reference 'math' here

Section 43.5: Programmatic Importing
You can import modules dynamically using the __import__()  function or 
importlib .

Example using __import__ :

python

Copy code

module_name = "math"

math_module = __import__(module_name)

print(math_module.sqrt(16))  # Output: 4.0

This can be useful when the module name is determined dynamically at 
runtime.

Section 43.6: PEP8 Rules for Imports
PEP8, the Python style guide, recommends that imports be organized in a 
specific way:



HiringHustle Python Interview kit-1 186

1. Standard library imports first.

2. Related third-party imports next.

3. Local application or library imports last.

4. You should also group imports with one line between each group.

Example:

python

Copy code

import os

import sys

import requests

from mymodule import myfunction

Section 43.7: Importing Specific Names from a Module
Instead of importing the entire module, you can import specific functions or 
variables from a module.

Example:

python

Copy code

from math import sqrt, pi

print(sqrt(16))  # 4.0

print(pi)        # 3.141592653589793

Section 43.8: Importing Submodules
Many libraries are organized into submodules, and you can import them using 
dot notation.

Example:



HiringHustle Python Interview kit-1 187

python

Copy code

import os.path

print(os.path.join("folder", "file.txt"))  # "folder/file.t

xt"

Section 43.9: Re-importing a Module
If you modify a module and want to reload it without restarting your Python 
session, you can use importlib.reload() .

Example:

python

Copy code

import importlib

import mymodule

importlib.reload(mymodule)  # Reload the module

Section 43.10: __import__()  Function
The __import__()  function is a low-level function used for importing modules 
dynamically. You can use it to programmatically load a module by name.

Example:

python

Copy code

module_name = "math"

math_module = __import__(module_name)

print(math_module.sqrt(16))  # Output: 4.0

Chapter 44: Difference Between Module and Package



HiringHustle Python Interview kit-1 188

In Python, both modules and packages are essential for organizing code, but 
they serve different purposes. Understanding the difference between them is 
important for managing larger Python projects.

Section 44.1: Modules
A module is a single Python file that contains code such as functions, classes, 
or variables. It can be imported and used in other Python scripts or modules.

Example:

python

Copy code

# math_operations.py (Module)

def add(a, b):

    return a + b

def subtract(a, b):

    return a - b

To use this module in another Python file, you simply import it:

python

Copy code

import math_operations

result = math_operations.add(5, 3)

print(result)  # Output: 8

Section 44.2: Packages
A package is a collection of modules grouped together in a directory hierarchy. 
A package contains a special file named __init__.py , which tells Python that the 
directory should be treated as a package.

Example:
Consider the following directory structure:



HiringHustle Python Interview kit-1 189

markdown

Copy code

math_package/

    __init__.py

    operations.py

    geometry.py

Here, math_package  is a package, and operations.py  and geometry.py  are modules 
inside it. To import a module from the package:

python

Copy code

from math_package import operations

result = operations.add(5, 3)

print(result)  # Output: 8

A package allows you to organize multiple related modules into a single 
namespace.

Chapter 45: Math Module
Python's math  module provides mathematical functions and constants. This 
chapter covers various functions in the math  module that help in mathematical 
computations.

Section 45.1: Rounding: round, floor, ceil, trunc
The math  module offers several functions to round numbers and perform floor, 
ceiling, and truncation operations.

round() : Rounds a number to the nearest integer.

python

Copy code

round(3.5)  # 4

round(3.4)  # 3



HiringHustle Python Interview kit-1 190

math.floor() : Returns the largest integer less than or equal to a given 
number.

python

Copy code

import math

math.floor(3.7)  # 3

math.ceil() : Returns the smallest integer greater than or equal to a given 
number.

python

Copy code

import math

math.ceil(3.1)  # 4

math.trunc() : Truncates a number by removing its decimal part.

python

Copy code

import math

math.trunc(3.7)  # 3

Section 45.2: Trigonometry
The math  module provides several trigonometric functions for working with 
angles (in radians).

math.sin(x) : Returns the sine of x .

math.cos(x) : Returns the cosine of x .

math.tan(x) : Returns the tangent of x .

math.asin(x) : Returns the arcsine (inverse of sine) of x .

math.acos(x) : Returns the arccosine (inverse of cosine) of x .

math.atan(x) : Returns the arctangent (inverse of tangent) of x .



HiringHustle Python Interview kit-1 191

python

Copy code

import math

angle = math.radians(45)  # Convert angle to radians

print(math.sin(angle))  # Output: 0.7071067811865475

Section 45.3: Pow for Faster Exponentiation
The math.pow()  function is used for exponentiation.

python

Copy code

import math

print(math.pow(2, 3))  # Output: 8.0 (2 raised to the power 

of 3)

Alternatively, the **  operator can be used in Python for exponentiation.

python

Copy code

print(2 ** 3)  # Output: 8

Section 45.4: Infinity and NaN ("Not a Number")
The math  module includes constants for infinity and NaN (Not a Number).

math.inf : Positive infinity.

math.inf : Negative infinity.

math.nan : Not a number.

python

Copy code

import math

print(math.inf)  # Output: inf



HiringHustle Python Interview kit-1 192

print(math.nan)  # Output: nan

Section 45.5: Logarithms
The math  module provides functions for logarithmic calculations.

math.log(x, base) : Returns the logarithm of x  to the given base .

math.log10(x) : Returns the base-10 logarithm of x .

math.log2(x) : Returns the base-2 logarithm of x .

python

Copy code

import math

print(math.log(100, 10))  # Output: 2.0 (logarithm base 10 

of 100)

print(math.log10(100))  # Output: 2.0

Section 45.6: Constants
The math  module provides some important mathematical constants:

math.pi : The mathematical constant pi (π).

math.e : The mathematical constant e (Euler's number).

python

Copy code

import math

print(math.pi)  # Output: 3.141592653589793

print(math.e)   # Output: 2.718281828459045

Section 45.7: Imaginary Numbers
The cmath  module (for complex numbers) provides functions to deal with 
imaginary numbers. You can convert numbers to complex type or perform 
complex arithmetic using cmath .



HiringHustle Python Interview kit-1 193

python

Copy code

import cmath

z = cmath.sqrt(-1)

print(z)  # Output: 1j

Section 45.8: Copying Signs
You can copy the sign of one number to another using math.copysign(x, y) .

python

Copy code

import math

print(math.copysign(3, -2))  # Output: -3.0 (copy sign of -

2 to 3)

Section 45.9: Complex Numbers and the cmath  Module
The cmath  module offers functions for complex numbers and can handle 
operations involving imaginary numbers.

cmath.phase(z) : Returns the phase (or angle) of a complex number z .

cmath.polar(z) : Converts a complex number to polar coordinates.

cmath.rect(r, phi) : Converts polar coordinates to rectangular form.

python

Copy code

import cmath

z = complex(3, 4)  # Complex number

print(cmath.polar(z))  # Output: (5.0, 0.9272952180016122) 

(magnitude and phase)

Chapter 46: Complex Math



HiringHustle Python Interview kit-1 194

Python supports complex numbers, and this chapter explores more advanced 
and basic operations on complex numbers.

Section 46.1: Advanced Complex Arithmetic
Python's support for complex numbers allows you to perform operations such 
as addition, subtraction, multiplication, and division with complex numbers. You 
can also use functions from the cmath  module for advanced mathematical 
functions on complex numbers.

Example:

python

Copy code

import cmath

# Define complex numbers

z1 = complex(3, 4)  # 3 + 4j

z2 = complex(1, 2)  # 1 + 2j

# Complex arithmetic operations

sum_z = z1 + z2  # (3 + 4j) + (1 + 2j) = (4 + 6j)

diff_z = z1 - z2  # (3 + 4j) - (1 + 2j) = (2 + 2j)

product_z = z1 * z2  # (3 + 4j) * (1 + 2j) = (3 + 6j + 4j + 

8j^2) = (3 + 10j - 8) = (-5 + 10j)

quotient_z = z1 / z2  # (3 + 4j) / (1 + 2j) = (11 + 2j) / 5 

= (2.2 + 0.4j)

print("Sum:", sum_z)

print("Difference:", diff_z)

print("Product:", product_z)

print("Quotient:", quotient_z)

Section 46.2: Basic Complex Arithmetic
In Python, complex numbers are represented with a real and imaginary part 
using the complex()  function or by using the suffix j .



HiringHustle Python Interview kit-1 195

Basic Operations:
Addition: z1 + z2

Subtraction: z1 - z2

Multiplication: z1 * z2

Division: z1 / z2

Example:

python

Copy code

# Using complex numbers directly

z1 = 3 + 4j

z2 = 1 + 2j

# Arithmetic operations

addition = z1 + z2  # Output: (4 + 6j)

subtraction = z1 - z2  # Output: (2 + 2j)

print("Addition:", addition)

print("Subtraction:", subtraction)

Chapter 47: Collections Module
Python's collections  module provides alternatives to Python's general-purpose 
built-in types like lists and dictionaries. It includes specialized container 
datatypes.

Section 47.1: collections.Counter
The Counter  class is a subclass of dict  designed to count hashable objects. It 
helps in counting elements in an iterable or mapping.

Example:

python

Copy code



HiringHustle Python Interview kit-1 196

from collections import Counter

# Count the occurrences of elements in a list

counter = Counter([1, 2, 2, 3, 3, 3, 4])

print(counter)  # Output: Counter({3: 3, 2: 2, 1: 1, 4: 1})

# Count characters in a string

char_counter = Counter("hello")

print(char_counter)  # Output: Counter({'l': 2, 'h': 1, 

'e': 1, 'o': 1})

Section 47.2: collections.OrderedDict
An OrderedDict  is a subclass of dict  that maintains the order of keys as they are 
added. This is useful when you need to preserve the order in which items were 
inserted into a dictionary.

Example:

python

Copy code

from collections import OrderedDict

# OrderedDict keeps the order of insertion

ordered_dict = OrderedDict()

ordered_dict['a'] = 1

ordered_dict['b'] = 2

ordered_dict['c'] = 3

print(ordered_dict)  # Output: OrderedDict([('a', 1), ('b', 

2), ('c', 3)])

Section 47.3: collections.defaultdict
The defaultdict  is a subclass of dict  that provides a default value for missing 
keys.



HiringHustle Python Interview kit-1 197

Example:

python

Copy code

from collections import defaultdict

# Using defaultdict with a default factory function

d = defaultdict(int)  # Default value is 0

d['apple'] += 1

d['banana'] += 2

print(d)  # Output: defaultdict(<class 'int'>, {'apple': 1, 

'banana': 2})

Section 47.4: collections.namedtuple
The namedtuple  function is used to create a tuple subclass with named fields. It 
provides an easy way to define simple classes for storing data.

Example:

python

Copy code

from collections import namedtuple

# Define a namedtuple called Point with x and y fields

Point = namedtuple('Point', ['x', 'y'])

# Create an instance of Point

pt = Point(3, 4)

print(pt.x, pt.y)  # Output: 3 4

Section 47.5: collections.deque
A deque  (double-ended queue) is a list-like container with fast appends and 
pops from both ends.



HiringHustle Python Interview kit-1 198

Example:

python

Copy code

from collections import deque

# Create a deque

dq = deque([1, 2, 3, 4])

dq.append(5)  # Add to the right

dq.appendleft(0)  # Add to the left

print(dq)  # Output: deque([0, 1, 2, 3, 4, 5])

Section 47.6: collections.ChainMap
A ChainMap  groups multiple dictionaries or mappings together to create a single, 
updateable view.

Example:

python

Copy code

from collections import ChainMap

# Create two dictionaries

dict1 = {'a': 1, 'b': 2}

dict2 = {'b': 3, 'c': 4}

# Create a ChainMap from the two dictionaries

chain_map = ChainMap(dict1, dict2)

print(chain_map['b'])  # Output: 2 (from dict1)

print(chain_map['c'])  # Output: 4 (from dict2)

Chapter 48: Operator Module
The operator  module exports a set of functions that correspond to standard 
operators in Python. These can be useful for functional programming.



HiringHustle Python Interview kit-1 199

Section 48.1: itemgetter
itemgetter  creates a callable object that can fetch an item from a sequence or 
mapping.

Example:

python

Copy code

from operator import itemgetter

# Use itemgetter to retrieve the second element from a tupl

e

data = [(1, 'a'), (2, 'b'), (3, 'c')]

getter = itemgetter(1)

print(getter(data[0]))  # Output: 'a'

Section 48.2: Operators as Alternative to an Infix Operator
Python's operator functions can be used to replace infix operators with 
functions that can be passed as arguments.

Example:

python

Copy code

from operator import add, mul

# Using operator functions

result_add = add(2, 3)  # 5

result_mul = mul(2, 3)  # 6

Section 48.3: methodcaller
The methodcaller  function returns a callable that invokes a method on an object.

Example:



HiringHustle Python Interview kit-1 200

python

Copy code

from operator import methodcaller

# Use methodcaller to call 'lower' method on a string

to_lower = methodcaller('lower')

print(to_lower('HELLO'))  # Output: 'hello'

Chapter 49: JSON Module
The json  module in Python is used for working with JSON (JavaScript Object 
Notation) data. JSON is a lightweight data interchange format that is easy to 
read and write for humans and machines alike. It is often used for transmitting 
data in web applications.

Section 49.1: Storing Data in a File
You can store Python objects as JSON in a file using the json.dump()  function. 
This is useful for saving configuration files, data, and other structures in a 
standard format.

Example:

python

Copy code

import json

# Example Python dictionary

data = {'name': 'John', 'age': 30, 'city': 'New York'}

# Open a file in write mode and store JSON

with open('data.json', 'w') as f:

    json.dump(data, f)



HiringHustle Python Interview kit-1 201

Section 49.2: Retrieving Data from a File
To read the JSON data back from a file, use the json.load()  function. This 
converts the JSON data into Python objects (like dictionaries).

Example:

python

Copy code

import json

# Read the JSON file and convert it to a Python dictionary

with open('data.json', 'r') as f:

    data = json.load(f)

print(data)  # Output: {'name': 'John', 'age': 30, 'city': 

'New York'}

Section 49.3: Formatting JSON Output
When outputting JSON, you can format it to make it easier to read. The 
json.dump()  and json.dumps()  functions have parameters like indent  to improve 
the output's readability.

Example:

python

Copy code

import json

# Example Python dictionary

data = {'name': 'John', 'age': 30, 'city': 'New York'}

# Write the JSON data with indentation

with open('data.json', 'w') as f:

    json.dump(data, f, indent=4)



HiringHustle Python Interview kit-1 202

The resulting JSON file will be formatted like this:

json

Copy code

{

    "name": "John",

    "age": 30,

    "city": "New York"

}

Section 49.4: load  vs loads , dump  vs dumps
json.load() : Reads a JSON file and converts it to a Python object.

json.loads() : Reads a JSON string and converts it to a Python object.

json.dump() : Writes a Python object to a file as JSON.

json.dumps() : Converts a Python object into a JSON string.

Example:

python

Copy code

import json

# Using load() and dump()

with open('data.json', 'w') as f:

    json.dump({'name': 'John', 'age': 30}, f)

# Using loads() and dumps()

json_str = '{"name": "John", "age": 30}'

data = json.loads(json_str)  # Converts JSON string to Pyth

on object

json_str = json.dumps(data)  # Converts Python object to JS

ON string



HiringHustle Python Interview kit-1 203

Section 49.5: Calling json.tool  from the Command Line to 
Pretty-Print JSON Output
The json.tool  module can be used directly from the command line to pretty-
print JSON data. It is especially useful for debugging or viewing large JSON 
files.

Example:

bash

Copy code

# Command to pretty-print a JSON file

python -m json.tool data.json

This command will display the contents of data.json  in a formatted, human-
readable way.

Section 49.6: JSON Encoding Custom Objects
When working with custom objects, you may need to define how they should 
be serialized into JSON. You can achieve this by overriding the default  method 
in a custom encoder class.

Example:

python

Copy code

import json

class CustomEncoder(json.JSONEncoder):

    def default(self, obj):

        if isinstance(obj, CustomClass):

            return {'name': obj.name}

        return super().default(obj)

class CustomClass:

    def __init__(self, name):

        self.name = name



HiringHustle Python Interview kit-1 204

# Example usage

obj = CustomClass('Test')

# Encode the custom object into JSON

json_str = json.dumps(obj, cls=CustomEncoder)

print(json_str)  # Output: {"name": "Test"}

Section 49.7: Creating JSON from Python Dict
You can create a JSON string from a Python dictionary using json.dumps() .

Example:

python

Copy code

import json

data = {'name': 'Alice', 'age': 25}

json_str = json.dumps(data)

print(json_str)  # Output: '{"name": "Alice", "age": 25}'

Section 49.8: Creating Python Dict from JSON
To convert a JSON string into a Python dictionary, use json.loads() .

Example:

python

Copy code

import json

json_str = '{"name": "Alice", "age": 25}'

data = json.loads(json_str)



HiringHustle Python Interview kit-1 205

print(data)  # Output: {'name': 'Alice', 'age': 25}

Chapter 50: Sqlite3 Module
The sqlite3  module allows you to interact with SQLite databases. SQLite is a 
lightweight, disk-based database that doesn’t require a separate server 
process.

Section 50.1: SQLite3 - No Separate Server Process Required
SQLite databases are self-contained and do not require a server process. You 
can interact with the database directly using the sqlite3  module.

Example:

python

Copy code

import sqlite3

# Connect to an SQLite database (it will be created if it d

oesn't exist)

conn = sqlite3.connect('example.db')

# Create a table

conn.execute('''CREATE TABLE IF NOT EXISTS users (id INTEGE

R PRIMARY KEY, name TEXT)''')

# Insert some data

conn.execute("INSERT INTO users (name) VALUES ('Alice')")

conn.commit()

# Close the connection

conn.close()

Section 50.2: Getting Values from the Database and Error 
Handling



HiringHustle Python Interview kit-1 206

You can query data from the SQLite database using the SELECT  statement. You 
can also handle errors with try-except blocks.

Example:

python

Copy code

import sqlite3

try:

    # Connect to the SQLite database

    conn = sqlite3.connect('example.db')

    # Retrieve values

    cursor = conn.execute("SELECT * FROM users")

    for row in cursor:

        print(f"ID: {row[0]}, Name: {row[1]}")

except sqlite3.Error as e:

    print("SQLite error:", e)

finally:

    # Close the connection

    if conn:

        conn.close()

This example retrieves data from the users  table and handles errors in case of 
issues like database connectivity problems.


	3e719cf49d78cf307c36ea0575661d0d2e9128b03360ffb4a9e38279a1160b9a.pdf
	3e719cf49d78cf307c36ea0575661d0d2e9128b03360ffb4a9e38279a1160b9a.pdf
	3e719cf49d78cf307c36ea0575661d0d2e9128b03360ffb4a9e38279a1160b9a.pdf

